Please wait a minute...
金属学报  2017, Vol. 53 Issue (10): 1215-1226    DOI: 10.11900/0412.1961.2017.00258
  研究论文 本期目录 | 过刊浏览 |
医用可降解血管支架临床研究进展
张小农1(), 左敏超1, 张绍翔2, 吴宏流1, 王文辉1, 陈文智1, 倪嘉桦1
1 上海交通大学材料科学与工程学院 上海 200240
2 苏州奥芮济医疗科技有限公司 苏州 215513
Advances in Clinical Research of Biodegradable Stents
Xiaonong ZHANG1(), Minchao ZUO1, Shaoxiang ZHANG2, Hongliu WU1, Wenhui WANG1, Wenzhi CHEN1, Jiahua NI1
1 School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2 Suzhou Origin Medical Technology Co. Ltd., Suzhou 215513, China
引用本文:

张小农, 左敏超, 张绍翔, 吴宏流, 王文辉, 陈文智, 倪嘉桦. 医用可降解血管支架临床研究进展[J]. 金属学报, 2017, 53(10): 1215-1226.
Xiaonong ZHANG, Minchao ZUO, Shaoxiang ZHANG, Hongliu WU, Wenhui WANG, Wenzhi CHEN, Jiahua NI. Advances in Clinical Research of Biodegradable Stents[J]. Acta Metall Sin, 2017, 53(10): 1215-1226.

全文: PDF(6283 KB)   HTML
摘要: 

心血管疾病是危害国人身体健康的第一大疾病,介入治疗已成为患者的重要选择,植入血管支架被认为是目前最便捷有效的技术。本文在简单介绍经皮冠脉介入治疗的发展历程的基础上,综合比较了美国雅培公司研发的生物可吸收高分子支架以及德国百多力公司研发的生物可降解镁合金支架的一系列随机临床实验数据,总结了可降解吸收支架目前存在的缺陷并分析了其未来的发展趋势。

关键词 介入治疗生物可吸收高分子支架可降解镁合金支架血栓管腔丢失    
Abstract

Cardiovascular disease has become the first major disease that is harmful to people's health, vascular stents and other percutaneous coronary interventions are considered the most important and effective treatment technology of cardiovascular disease. In this review, the development about percutaneous coronary interventions was simply introduced, through comparing a series of randomized clinical trial data of bioabsorbable vascular stents developed by Abbott of the United States and absorbable magnesium stents developed by Biotronik of Germany, summarizing the shortcomings and analyzing trend in the future of absorbable stents.

Key wordspercutaneous coronary intervention    bioabsorbable vascular stent    absorbable magnesium stent    thrombosis    lumen loss
收稿日期: 2017-06-30     
ZTFLH:  TB31  
基金资助:国家自然科学基金项目No.51571142,国家重点研发计划项目No.2016YFC1102403和上海市科学技术委员会科研计划项目No.14441901801
作者简介:

作者简介 张小农,男,1969年生,副教授,博士

图1  经皮冠脉介入治疗发展史[3]
图2  Absorb BVS 1.0与BVS 1.1支架结构比较[29]
Device thrombosis 30 d 1 a
BVS 2.1% 2.4%
EES 0.3% 1.4%
BMS 1.0% 1.7%
表1  全吸收式血管支架(BVS)、依维莫司药物洗脱支架(EES)和金属裸支架(BMS)支架血栓发生率比较[33]
Absorb AIDA BVS Co-Cr EES p
(n=924) (n=921)
TVF 11.7% 10.7% 0.43
Target-vessel MI 5.5% 3.2% 0.04
Cardiac death 2.0% 2.7% 0.43
TVR 8.7% 7.5% 0.37
Definite or probable 3.5% 0.9% <0.001
device thrombosis
表2  Absorb AIDA 的2 a临床结果[34]
Absorb III Absorb Xience p
(n=1322) (n=686)
TLF 7.8% 6.1% pNI=0.007
Rate of cardiac death 0.6% 0.1% 0.29
Target vessel MI 6.0% 4.6% 0.18
ID-TLR 3.0% 2.5% 0.50
Stent thrombosis 1.5% 0.7% 0.13
表3  Absorb III的1 a临床结果[36]
图3  Absorb BVS支架吸收时间图[3]
图4  扩张前后的可吸收镁合金支架[50]
图5  裸镁合金支架(AMS)植入前后的右冠状动脉近端血管造影图[49]
Scaffold Strut material Coating Eluted drug Strut thickness Radio-opacity Radial support Resorption
material μm month month
AMS Mg alloy None None 165 None 2 <4
DREAMS-1G Mg alloy with PLGA Paclitaxel 125 None 3~6 9
rare metal
DREAMS-2G Mg alloy with PLLA Sirolimus 150 Tantalum 3~6 9
rare metal marker
表4  可降解镁合金支架参数[3,49-51]
图6  手术后及第4个月随访右冠状动脉近端血管造影及局部血管内超声图[49]
图7  药物洗脱可降解镁合金支架植入不同时间的功能原理图[24]
图8  DREAMS-1G植入后、6个月及12个月冠脉内超声结果[50]
Trial Patient RVD / mm Length of lesion / mm Diameter stenosis
BIOSOLVE-I 46 3.0~3.5 <12 50%~99%
BIOSOLVE-II 123 2.2~3.7 <21 50%~99%
表5  BIOSOLVE系列临床实验病变参数[50,51]
图9  DREAMS-2G植入后及植入第6个月光学相干断层成像[51]
图10  可降解镁合金支架累计晚期管腔丢失对比[51]
Parameter AMS DREAMS-1G DREAMS-2G
Patient 63 46 123
Follow-up 4 months (n=63) 6 months (n=36) 12 months (n=34) 6 months (n=112)
In segment LLL / mm 0.83±0.51 0.52±0.48 0.39±0.33 0.27±0.37
In scaffold LLL / mm 1.08±0.49 0.65±0.50 0.52±0.39 0.44±0.36
In segment DS 49.66%±16.25% 29.02%±18.99% 25.31%±12.01% 25.9%±12.3%
In scaffold DS 48.37%±17.00% 25.01%±21.07% 20.92%±16.70% 22.6%±12.9%
In segment MLD / mm 1.34±0.49 1.84±0.52 1.96±0.43 2.55±0.41
In scaffold MLD / mm 1.38±0.51 1.95±0.59 2.06±0.47 2.59±0.40
TLF NA NA 7% 3%
Target vessel MI 0 NA 3% <1%
Clinically driven TLR 23.8% NA 4.3% 1.7%
Scaffold thrombosis 0 0 0 0
表6  可降解镁合金支架临床数据对比[49-51]
[1] Hou Z L, Liu D E.Investigation and analysis of common use of drugs for treatment of cardiovascular diseases[J]. Contemp. Med., 2011, 17(29): 137(侯忠玲, 刘代娥. 常见治疗心血管疾病药物使用的调查分析[J]. 当代医学, 2011, 17(29): 137)
[2] Kinch M S, Surovtseva Y, Hoyer D.An analysis of FDA-approved drugs for cardiovascular diseases[J]. Drug Discovery Today, 2016, 21: 1
[3] Indolfi C, De Rosa S, Colombo A.Bioresorbable vascular scaffolds-basic concepts and clinical outcome[J]. Nat. Rev. Cardiol., 2016, 13: 719
[4] Dotter C T, Judkins M P.Transluminal treatment of arteriosclerotic obstruction: Description of a new technic and a preliminary report of its application[J]. Circulation, 1964, 30: 654
[5] Grüntzig A.Transluminal dilatation of coronary-artery stenosis[J]. Lancet, 1978, 311: 263
[6] Sigwart U, Puel J, Mirkovitch V, et al.Intravascular stents to prevent occlusion and re-stenosis after transluminal angioplasty[J]. New Engl. J. Med., 1987, 316: 701
[7] Palmaz J C, Richter G M, Noeldge G, et al.Intraluminal stents in atherosclerotic iliac artery stenosis: Preliminary report of a multicenter study[J]. Radiology, 1988, 168: 727
[8] Günther R W, Vorwerk D, Bohndorf K, et al.Venous stenoses in dialysis shunts: Treatment with self-expanding metallic stents[J]. Radiology, 1989, 170: 401
[9] Palmerini T, Biondi-Zoccai G, Riva D D, et al.Stent thrombosis with drug-eluting and bare-metal stents: Evidence from a comprehensive network meta-analysis[J]. Lancet, 2012, 379: 1393
[10] Kirtane A J, Gupta A, Iyengar S, et al.Safety and efficacy of drug-eluting and bare metal stents: Comprehensive meta-analysis of randomized trials and observational studies[J]. Circulation, 2009, 119: 3198
[11] Bangalore S, Kumar S, Fusaro M, et al.Outcomes with various drug eluting or bare metal stents in patients with diabetes mellitus: Mixed treatment comparison analysis of 22 844 patient years of follow-up from randomised trials[J]. BMJ, 2012, 345: e5170
[12] Indolfi C, Pavia M, Angelillo I F.Drug-eluting stents versus bare metal stents in percutaneous coronary interventions (a meta-analysis)[J]. Am. J. Cardiol., 2005, 95: 1146
[13] Lemos P A, Serruys P W, van Domburg R T, et al. Unrestricted utilization of sirolimus-eluting stents compared with conventional bare stent implantation in the “real world”: The rapamycin-eluting stent evaluated at rotterdam cardiology hospital (RESEARCH) registry[J]. Circulation, 2004, 109: 190
[14] Serruys P W, Daemen J, Morice M C, et al.Three-year follow-up of the ARTS-II#-sirolimus-eluting stents for the treatment of patients with multivessel coronary artery disease[J]. EuroIntervention, 2008, 3: 450
[15] Serruys P W, Onuma Y, Garg S, et al.5-year clinical outcomes of the ARTS II (arterial revascularization therapies study II) of the sirolimus-eluting stent in the treatment of patients with multivessel de novo coronary artery lesions[J]. J. Am. Coll. Cardiol., 2010, 55: 1093
[16] Lüscher T F, Steffel J, Eberli F R, et al.Drug-eluting stent and coronary thrombosis: Biological mechanisms and clinical implications[J]. Circulation, 2007, 115: 1051
[17] Finn A V, Nakazawa G, Joner M, et al.Vascular responses to drug eluting stents: Importance of delayed healing[J]. Arterioscler. Thromb. Vasc. Biol., 2007, 27: 1500
[18] Kalra A, Rehman H, Khera S, et al.New-generation coronary stents: Current data and future directions[J]. Curr. Atheroscler. Rep., 2017, 19: 14
[19] Stack R S.New interventional technology[J]. Am. J. Cardiol., 1988, 62: F12
[20] Chapman G D, Gammon R S, Bauman R P, et al.Intravascular stents[J]. Trends Cardiovasc. Med., 1991, 1: 127
[21] Yamawaki T, Shimokawa H, Kozai T, et al.Intramural delivery of a specific tyrosine kinase inhibitor with biodegradable stent suppresses the restenotic changes of the coronary artery in pigs in vivo[J]. J. Am. Coll. Cardiol., 1998, 32: 780
[22] Tamai H, Igaki K, Kyo E, et al.Initial and 6-month results of biodegradable poly-l-lactic acid coronary stents in humans[J]. Circulation, 2000, 102: 399
[23] Peuster M, Hesse C, Schloo T, et al.Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta[J]. Biomaterials, 2006, 27: 4955
[24] Iqbal J, Onuma Y, Ormiston J, et al.Bioresorbable scaffolds: Rationale, current status, challenges, and future[J]. Eur. Heart J., 2014, 35: 765
[25] Onuma Y, Dudek D, Thuesen L, et al.Five-year clinical and functional multislice computed tomography angiographic results after coronary implantation of the fully resorbable polymeric everolimus-eluting scaffold in patients with de novo coronary artery disease: The absorb cohort a trial[J]. JACC Cardiovasc. Interv., 2013, 6: 999
[26] Borghi Jr T C, Ribamar Costa Jr J, Abizaid A, et al. Comparison of acute stent recoil between the everolimus-eluting bioresorbable vascular scaffold and two different drug-eluting metallic stents[J]. Rev. Bras. Cardiol. Invasiva (Engl. Ed.), 2013, 21: 326
[27] Serruys P W, Onuma Y, Ormiston J A, et al.Evaluation of the second generation of a bioresorbable everolimus drug-eluting vascular scaffold for treatment of de novo coronary artery stenosis[J]. Circulation, 2010, 122: 2301
[28] Serruys P W, Onuma Y, Dudek D, et al.Evaluation of the second generation of a bioresorbable everolimus-eluting vascular scaffold for the treatment of de novo coronary artery stenosis: 12-month clinical and imaging outcomes[J]. J. Am. Coll. Cardiol., 2011, 58: 1578
[29] Onuma Y, Serruys P W, Gomez J, et al.Comparison of in vivo acute stent recoil between the bioresorbable everolimus-eluting coronary scaffolds (revision 1.0 and 1.1) and the metallic everolimus-eluting stent[J]. Catheter. Cardiovasc. Interv., 2011, 78: 3
[30] Serruys P W, Chevalier B, Dudek D, et al.A bioresorbable everolimus-eluting scaffold versus a metallic everolimus-eluting stent for ischaemic heart disease caused by de-novo native coronary artery lesions (ABSORB II): An interim 1-year analysis of clinical and procedural secondary outcomes from a randomised controlled trial[J]. Lancet, 2015, 385: 43
[31] Serruys P W, Chevalier B, Sotomi Y, et al.Comparison of an everolimus-eluting bioresorbable scaffold with an everolimus-eluting metallic stent for the treatment of coronary artery stenosis (ABSORB II): A 3 year, randomised, controlled, single-blind, multicentre clinical trial[J]. Lancet, 2016, 388: 2479
[32] Felix C M, Vlachojannis G J, IJsselmuiden A J, et al.Very late scaffold thrombosis in Absorb BVS: Association with DAPT termination?[J]. JACC Cardiovasc. Interv., 2017, 10: 625
[33] Brugaletta S, Gori T, Low A F L, et al. Absorb bioresorbable vascular scaffold versus everolimus-eluting metallic stent in ST-segment elevation myocardial infarction: 1-year results of a propensity score matching comparison: The BVS-EXAMINATION study (bioresorbable vascular scaffold-a clinical evaluation of everolimus eluting coronary stents in the treatment of patients with ST-segment elevation myocardial infarction)[J]. JACC Cardiovasc. Interv., 2015, 8: 189
[34] Wykrzykowska J J, Kraak R P, Hofma S H, et al.Bioresorbable scaffolds versus metallic stents in routine PCI[J]. New Engl. J. Med., 2017, 376: 2319
[35] Kereiakes D J, Ellis S G, Popma J J, et al.Evaluation of a fully bioresorbable vascular scaffold in patients with coronary artery disease: Design of and rationale for the ABSORB III randomized trial[J]. Am. Heart J., 2015, 170: 641
[36] Ellis S G, Kereiakes D J, Metzger D C, et al.Everolimus-eluting bioresorbable scaffolds for coronary artery disease[J]. New Engl. J. Med., 2015, 373: 1905
[37] Stone G W, Ellis S, Simonton C, et al.Outcomes of the absorb bioresorbable vascular scaffold in very small and not very small coronary arteries: The Absorb III randomized trial[J]. J. Am. Coll. Cardiol., 2016, 67: 35
[38] Gao R L, Yang Y J, Han Y L, et al.Bioresorbable vascular scaffolds versus metallic stents in patients with coronary artery disease: ABSORB China trial[J]. J. Am. Coll. Cardiol., 2015, 66: 2298
[39] Kimura T, Kozuma K, Tanabe K, et al.A randomized trial evaluating everolimus-eluting Absorb bioresorbable scaffolds vs. everolimus-eluting metallic stents in patients with coronary artery disease: ABSORB Japan[J]. Eur. Heart J., 2015, 36: 3332
[40] De Ribamar Costa Jr J, Abizaid A, Bartorelli A L, et al. Impact of post-dilation on the acute and one-year clinical outcomes of a large cohort of patients treated solely with the absorb bioresorbable vascular scaffold[J]. EuroIntervention, 2015, 11: 141
[41] Bowen P K, Drelich J, Goldman J.A new in vitro-in vivo correlation for bioabsorbable magnesium stents from mechanical behavior[J]. Mater. Sci. Eng., 2013, C33: 5064
[42] Heublein B, Rohde R, Kaese V, et al.Biocorrosion of magnesium alloys: A new principle in cardiovascular implant technology?[J]. Heart, 2003, 89: 651
[43] Wang J, He Y H, Maitz M F, et al.A surface-eroding poly(1, 3-trimethylene carbonate) coating for fully biodegradable magnesium-based stent applications: Toward better biofunction, biodegradation and biocompatibility[J]. Acta Biomater., 2013, 9: 8678
[44] Gu X N, Zheng Y F.A review on magnesium alloys as biodegradable materials[J]. Front. Mater. Sci. China, 2010, 4: 111
[45] Zheng Y F, Gu X N, Witte F.Biodegradable metals[J]. Mater. Sci. Eng., 2014, R77: 1
[46] Agarwal S, Curtin J, Duffy B, et al.Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications[J]. Mater. Sci. Eng., 2016, C68: 948
[47] Wang W, Wang Y L, Chen M, et al.Magnesium alloy covered stent for treatment of a lateral aneurysm model in rabbit common carotid artery: An in vivo study[J]. Sci. Rep., 2016, 6: 37401
[48] Waksman R, Pakala R, Wittchow E, et al.Safety and efficacy of bioabsorbable magnesium-alloy stent in porcine coronary arteries: Morphometric analysis of a long-term study[J]. Cardiovasc. Revasc. Med., 2006, 7: 92
[49] Erbel R, Di Mario C, Bartunek J, et al.Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: A prospective, non-randomised multicentre trial[J]. Lancet, 2007, 369: 1869
[50] Haude M, Erbel R, Erne P, et al.Safety and performance of the drug-eluting absorbable metal scaffold (DREAMS) in patients with de-novo coronary lesions: 12 month results of the prospective, multicentre, first-in-man BIOSOLVE-I trial[J]. Lancet, 2013, 381: 836
[51] Haude M, Ince H, Abizaid A, et al.Safety and performance of the second-generation drug-eluting absorbable metal scaffold in patients with de-novo coronary artery lesions (BIOSOLVE-II): 6 month results of a prospective, multicentre, non-randomised, first-in-man trial[J]. Lancet, 2016, 387: 31
[52] Peeters P, Bosiers M, Verbist J, et al.Preliminary results after application of absorbable metal stents in patients with critical limb ischemia[J]. J. Endovasc. Ther., 2005, 12: 1
[53] Waksman R, Erbel R, Di Mario C, et al.Early and long-term intravascular ultrasound and angiographic findings after bioabsorbable magnesium stent implantation in human coronary arteries[J]. JACC Cardiovasc. Interv., 2009, 2: 312
[54] Meredith I T, Verheye S, Dubois C L, et al.Primary endpoint results of the EVOLVE Trial: A randomized evaluation of a novel bioabsorbable polymer-coated, everolimus-eluting coronary stent[J]. J. Am. Coll. Cardiol., 2012, 59: 1362
[55] Serruys P W, Ormiston J, van Geuns R J, et al. A polylactide bioresorbable scaffold eluting everolimus for treatment of coronary stenosis: 5-year follow-up[J]. J. Am. Coll. Cardiol., 2016, 67: 766
[1] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.
[2] 范国华, 缪克松, 李丹阳, 夏夷平, 吴昊. 从局域应力/应变视角理解异构金属材料的强韧化行为[J]. 金属学报, 2022, 58(11): 1427-1440.
[3] 罗旋, 韩芳, 黄天林, 吴桂林, 黄晓旭. 层状异构Mg-3Gd合金的微观组织和力学性能[J]. 金属学报, 2022, 58(11): 1489-1496.
[4] 宋文硕, 宋竹满, 罗雪梅, 张广平, 张滨. 粗糙表面高强铝合金导线疲劳寿命预测[J]. 金属学报, 2022, 58(8): 1035-1043.
[5] 曾小勤, 王杰, 应韬, 丁文江. 镁及其合金导热研究进展[J]. 金属学报, 2022, 58(4): 400-411.
[6] 杨亮, 吕皓天, 万春磊, 巩前明, 陈浩, 张弛, 杨志刚. 综述:活性元素作用机理——氧化物“钉扎”模型[J]. 金属学报, 2021, 57(2): 182-190.
[7] 李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
[8] 李源才, 江五贵, 周宇. 纳米孔洞对单晶/多晶Ni复合体拉伸性能的影响[J]. 金属学报, 2020, 56(5): 776-784.
[9] 牛建钢, 肖伟. TiNi合金B2奥氏体中Ti位Ni诱导的晶格失稳[J]. 金属学报, 2019, 55(2): 267-273.
[10] 任建强, 梁淑华, 姜伊辉, 杜翔. 原位(TiB2-TiB)/Cu复合材料组织与性能研究[J]. 金属学报, 2019, 55(1): 126-132.