Please wait a minute...
金属学报  2018, Vol. 54 Issue (4): 603-612    DOI: 10.11900/0412.1961.2017.00252
  本期目录 | 过刊浏览 |
六角结构金属中基面/柱面取向转变的孪晶路径及合金化效应的第一性原理研究
周刚1,2, 叶荔华1, 王皞1(), 徐东生1, 孟长功2, 杨锐1
1 中国科学院金属研究所 沈阳 110016
2 大连理工大学材料科学与工程学院 大连 116024
A First-Principles Study on Basal/Prismatic Reorientation-Induced Twinning Path and Alloying Effect in Hexagonal Metals
Gang ZHOU1,2, Lihua YE1, Hao WANG1(), Dongsheng XU1, Changgong MENG2, Rui YANG1
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
全文: PDF(8534 KB)   HTML
摘要: 

采用第一性原理方法系统研究了不同六角结构金属中基面到柱面的取向转变过程及合金化影响。结果表明,在不同六角结构金属中,取向转变需要不同的激发能,其中Mg的激发能最低,而Os最高;取向转变过程由剪切变形和原子重排2部分构成。在Mg中,原子重排贡献了激发能的主要部分,而在Ti中,当剪切变形足够大时,随后的原子重排为能量下降过程。合金元素主要影响镁合金中的纯剪切变形部分,而在钛合金中,主要影响原子重排部分;在具有一定的剪切变形量或原子重排量的条件下,合金元素对后续激发能的影响较复杂。

关键词 六角结构金属孪晶第一性原理计算合金化    
Abstract

In hexagonal metals and alloys, deformation twinning plays an important role, because it is closely relevant to the mechanical behaviors. Recent studies have proposed a new twinning mode via direct lattice reorientation, which results in the basal/prismatic boundary, however, some important details remain unanswered, e.g., the twinning path and alloying effect. In this work, first principles calculations were employed to systematically study the reorientation process from basal to prismatic orientation in hexagonal metals and corresponding alloying effect. The result indicates that different activation energies are required to reorient in various hexagonal metals, and among them, the energy in Mg is the lowest and Os is the highest. Shear and shuffle components compose the reorientation process, where the shuffle component always contributes a significant part of the activation energy in Mg, whereas in Ti with sufficient shear strain, subsequent transition becomes energy-downhill. The pure shear was effected by alloying elements in Mg alloys, but pure shuffle in Ti alloys. Under certain shear or shuffle, subsequent activation energy has a complex dependence on alloying elements.

Key wordshexagonal metal    twinning    first principles calculation    alloying
收稿日期: 2017-06-27      出版日期: 2017-08-22
ZTFLH:  TG146.2  
基金资助:国家重点研发计划项目No.2016YFB0701304和国家自然科学基金项目No.51671195
作者简介:

作者简介 周 刚,男,1986年生,博士生

引用本文:

周刚, 叶荔华, 王皞, 徐东生, 孟长功, 杨锐. 六角结构金属中基面/柱面取向转变的孪晶路径及合金化效应的第一性原理研究[J]. 金属学报, 2018, 54(4): 603-612.
Gang ZHOU, Lihua YE, Hao WANG, Dongsheng XU, Changgong MENG, Rui YANG. A First-Principles Study on Basal/Prismatic Reorientation-Induced Twinning Path and Alloying Effect in Hexagonal Metals. Acta Metall, 2018, 54(4): 603-612.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2017.00252      或      http://www.ams.org.cn/CN/Y2018/V54/I4/603

图1  基面取向到柱面取向转变的原子示意图
图2  19种六角结构金属中形成B/P取向转变的能垒
Metal Cal. Exp.[21]
Be 1.568 1.574
Mg 1.624 1.623
Sc 1.592 1.555
Ti 1.587 1.584
Y 1.571 1.552
Zr 1.593 1.597
Tc 1.605 1.599
Gd 1.591 1.575
Tb 1.580 1.564
Dy 1.573 1.556
Ho 1.570 1.552
Er 1.569 1.550
Tm 1.570 1.551
Lu 1.583 1.555
Hf 1.581 1.581
Co 1.623 1.615
Ru 1.583 1.576
Re 1.615 1.615
Os 1.606 1.578
表1  六角结构金属c/a的计算值和实验值[21]
Metal ZPVE Metal ZPVE
meVatom-1 meVatom-1
Be -1.66 Ho 0.14
Mg 0.20 Er 0.17
Sc 0.45 Tm -0.04
Ti -1.21 Lu 0.38
Y 0.02 Hf 0.44
Zr 0.23 Co 0.34
Tc 0.18 Ru 1.44
Gd 1.68 Re -1.61
Tb 1.03 Os 0.96
Dy 0.34
表2  零点振动能修正
图3  16种六角结构金属形成B/P取向转变能垒和c/a比的关系
图4  剪切变形和原子重排的原子示意图
图5  Mg和Ti中剪切变形和原子重排的能量分布图
图6  Mg和Ti中ΔE分布柱状图
图7  镁合金中B/P取向转变的能量分布图
图8  钛合金中B/P取向转变的能量分布图
图9  Mg、Mg-La、Ti、Ti-La在初始构型和50% B/P取向转变处的三维差分电荷密度图
[1] Biget M P, Saada G.Low-temperature plasticity of high purity α-titanium single crystals[J]. Philos. Mag., 1989, 59A: 747
[2] Ostapovets A, Molnár P, Gröeger R. On basal-prismatic twinning interfaces in magnesium [J]. 6th International Conference on Nanomaterials by Severe Plastic Deformation [C]. Bristol: IOP Publishing, 2014: 012134
[3] Zhang X Y, Lou C, Tu J, et al.Plasticity induced by twin lamellar structure in magnesium alloy[J]. J. Mater. Sci. Technol., 2013, 29: 1123
doi: 10.1016/j.jmst.2013.10.017
[4] Lou C, Zhang X Y, Wang R H, et al.Effects of untwinning and {1012} twin lamellar structure on the mechanical properties of Mg alloy[J]. Acta Metall. Sin., 2013, 49: 291(娄超, 张喜燕, 汪润红等. 退孪生行为以及{1012}孪晶片层结构对镁合金力学性能的影响[J]. 金属学报, 2013, 49: 291)
doi: 10.3724/SP.J.1037.2012.00582
[5] Wang Y N, Huang J C.Texture analysis in hexagonal materials[J]. Mater. Chem. Phys., 2003, 81: 11
doi: 10.1016/S0254-0584(03)00168-8
[6] Yoo M H, Wei C T.Slip modes of hexagonal-close-packed metals[J]. J. Appl. Phys., 1967, 38: 4317
doi: 10.1063/1.1709121
[7] Shan Z W, Liu B Y.The mechanism of {1012} deformation twinning in magnesium[J]. Acta Metall. Sin., 2016, 52: 1267(单智伟, 刘博宇. Mg的{1012}形变孪晶机制[J]. 金属学报, 2016, 52: 1267)
[8] Liu B Y, Wang J, Li B, et al.Twinning-like lattice reorientation without a crystallographic twinning plane[J]. Nat. Commun., 2014, 5: 3297
doi: 10.1038/ncomms4297 pmid: 20
[9] Zong H X, Ding X D, Lookman T, et al.Collective nature of plasticity in mediating phase transformation under shock compression[J]. Phys. Rev., 2014, 89B: 220101
[10] Kumar A, Wang J, Tomé C N.First-principles study of energy and atomic solubility of twinning-associated boundaries in hexagonal metals[J]. Acta Mater., 2015, 85: 144
doi: 10.1016/j.actamat.2014.11.015
[11] Ishii A, Li J, Ogata S.Shuffling-controlled versus strain-controlled deformation twinning: The case for HCP Mg twin nucleation[J]. Int. J. Plast., 2016, 82: 32
doi: 10.1016/j.ijplas.2016.01.019
[12] Zhang X Y, Li B, Tu J, et al.Non-classical twinning behavior in dynamically deformed cobalt[J]. Mater. Res. Lett., 2015, 3: 142
doi: 10.1080/21663831.2015.1034297
[13] Li B, Zhang X Y.Twinning with zero twinning shear[J]. Scr. Mater., 2016, 125: 73
doi: 10.1016/j.scriptamat.2016.07.004
[14] Wu W, Gao Y F, Li N, et al.Intragranular twinning, detwinning, and twinning-like lattice reorientation in magnesium alloys[J]. Acta Mater., 2016, 121: 15
doi: 10.1016/j.actamat.2016.08.058
[15] Kresse G, Hafner J.Ab initio molecular-dynamics simulation of the liquid-metal amorphous-semiconductor transition in germanium[J]. Phys. Rev., 1994, 49B: 14251
doi: 10.1103/PhysRevB.49.14251 pmid: 10010505
[16] Kresse G, Furthmüller J.Efficient iterative schemes for Ab initio total-energy calculations using a plane-wave basis set[J]. Phys. Rev., 1996, 54B: 11169
doi: 10.1103/PhysRevB.54.11169 pmid: 9984901
[17] Blöchl P E.Projector augmented-wave method[J]. Phys. Rev., 1994, 50B: 17953
[18] Kresse G, Joubert D.From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Phys. Rev., 1999, 59B: 1758
[19] Perdew J P, Burke K, Ernzerhof M.Generalized gradient approximation made simple[J]. Phys. Rev. Lett., 1996, 77: 3865
doi: 10.1103/PhysRevLett.77.3865
[20] Sheppard D, Xiao P H, Chemelewski W, et al.A generalized solid-state nudged elastic band method[J]. J. Chem. Phys., 2012, 136: 074103
doi: 10.1063/1.3684549 pmid: 22360232
[21] Martienssen W, Warlimont H.Springer Handbook of Condensed Matter and Materials Data[M]. Berlin: Springer, 2005: 54
[22] Park J S, Chang Y W. The effect of alloying elements on the c/a ratio of magnesium binary alloys [J]. Adv. Mater. Res., 2007, 26-28: 95
doi: 10.4028/www.scientific.net/AMR.26-28.95
[23] Kim H L, Park J S, Chang Y W.Effects of lattice parameter changes on critical resolved shear stress and mechanical properties of magnesium binary single crystals[J]. Mater. Sci. Eng., 2012, A540: 198
doi: 10.1016/j.msea.2012.01.126
[24] Minárik P, Král R, Čižek J, et al.Effect of different c/a ratio on the microstructure and mechanical properties in magnesium alloys processed by ECAP[J]. Acta Mater., 2016, 107: 83
doi: 10.1016/j.actamat.2015.12.050
[25] Zheng-Johansson J X, Eriksson O, Johansson B. Systematic behavior of the hexagonal axial ratio for the d transition metals[J]. Phys. Rev., 1999, 59B: 6131
doi: 10.1103/PhysRevB.59.6131
[26] Nan X L, Wang H Y, Zhang L, et al.Calculation of schmid factors in magnesium: Analysis of deformation behaviors[J]. Scr. Mater., 2012, 67: 443
doi: 10.1016/j.scriptamat.2012.05.042
[27] Kwasniak P, Muzyk M, Garbacz H, et al.Influence of oxygen content on the mechanical properties of hexagonal Ti-first principles calculations[J]. Mater. Sci. Eng., 2014, A590: 74
doi: 10.1016/j.msea.2013.10.004
[1] 程钊, 金帅, 卢磊. 电解液温度对直流电解沉积纳米孪晶Cu微观结构的影响[J]. 金属学报, 2018, 54(3): 428-434.
[2] 惠亚军, 潘辉, 刘锟, 李文远, 于洋, 陈斌, 崔阳. 600 MPa级Nb-Ti微合金化高成形性元宝梁用钢的强化机制[J]. 金属学报, 2017, 53(8): 937-946.
[3] 惠亚军,潘辉,李文远,刘锟,陈斌,崔阳. 1000 MPa级Nb-Ti微合金化超高强度钢加热制度研究[J]. 金属学报, 2017, 53(2): 129-139.
[4] 杨乐, 李秀艳, 卢柯. 材料素化:概念、原理及应用[J]. 金属学报, 2017, 53(11): 1413-1417.
[5] 白静,李泽,万震,赵骧. Ni-Mn-Ga-Cu铁磁形状记忆合金的晶体结构、相稳定性和磁性能的第一性原理研究[J]. 金属学报, 2017, 53(1): 83-89.
[6] 金帅,程钊,潘庆松,卢磊. 添加剂浓度对直流电解沉积纳米孪晶Cu微观结构的影响*[J]. 金属学报, 2016, 52(8): 973-979.
[7] 李劲风,刘丹阳,郑子樵,陈永来,张绪虎. Er微合金化对2055 Al-Li合金微观组织及力学性能的影响*[J]. 金属学报, 2016, 52(7): 821-830.
[8] 吴臣亮,张松,张春华,关锰,谭俊哲. 不锈钢表面FeCoCrAlCuNiMox激光高熵合金化层的相演变*[J]. 金属学报, 2016, 52(7): 797-803.
[9] 郭巍巍,齐成军,李小武. 共轭和临界双滑移取向Cu单晶体疲劳位错结构的热稳定性研究*[J]. 金属学报, 2016, 52(6): 761-768.
[10] 白敬胜,卢秋虹,卢磊. 纳米孪晶Cu中局部剪切应变诱导的退孪生行为*[J]. 金属学报, 2016, 52(4): 491-496.
[11] 张正延,孙新军,雍岐龙,李昭东,王振强,王国栋. Nb-Mo微合金高强钢强化机理及其纳米级碳化物析出行为*[J]. 金属学报, 2016, 52(4): 410-418.
[12] 吴松全,杨义,李阁平,平德海,胡青苗,杨锐. {112}<111>孪生的形核和长大及终止的ω点阵机制*[J]. 金属学报, 2016, 52(2): 249-256.
[13] 袁晓云, 陈礼清. 晶粒及晶界特征对高锰奥氏体TWIP钢抗腐蚀能力的影响*[J]. 金属学报, 2016, 52(10): 1345-1352.
[14] 朱敏, 鲁忠臣, 胡仁宗, 欧阳柳章. 介质阻挡放电等离子体辅助球磨及其在材料制备中的应用*[J]. 金属学报, 2016, 52(10): 1239-1248.
[15] 单智伟, 刘博宇. Mg的{101̅2}形变孪晶机制*[J]. 金属学报, 2016, 52(10): 1267-1278.