Please wait a minute...
金属学报  2018, Vol. 54 Issue (3): 443-456    DOI: 10.11900/0412.1961.2017.00246
  本期目录 | 过刊浏览 |
纳米晶Ta2N涂层在模拟人体环境中的耐蚀性能研究
徐江1(), 鲍习科1, 蒋书运2
1 南京航空航天大学材料科学与技术学院 南京 210016
2 东南大学机械工程学院 南京 211102
In Vitro Corrosion Resistance of Ta2N Nanocrystalline Coating in Simulated Body Fluids
Jiang XU1(), Xike BAO1, Shuyun JIANG2
1 College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
2 School of Mechanical Engineering, Southeast University, Nanjing 211102, China
引用本文:

徐江, 鲍习科, 蒋书运. 纳米晶Ta2N涂层在模拟人体环境中的耐蚀性能研究[J]. 金属学报, 2018, 54(3): 443-456.
Jiang XU, Xike BAO, Shuyun JIANG. In Vitro Corrosion Resistance of Ta2N Nanocrystalline Coating in Simulated Body Fluids[J]. Acta Metall Sin, 2018, 54(3): 443-456.

全文: PDF(6418 KB)   HTML
摘要: 

为了改善植入钛合金材料在人体环境中耐蚀性能,采用双阴极等离子反应溅射沉积方法,在医用Ti-6Al-4V钛合金表面制备了厚度为40 μm、平均晶粒尺寸为12.8 nm的Ta2N纳米晶涂层。采用纳米压入仪、Vikers压痕仪和划痕仪考察了Ta2N纳米晶涂层的硬度、弹性模量、韧性以及涂层与基体间的结合力。结果表明,Ta2N涂层的硬度和弹性模量分别为(32.1±1.6) GPa和(294.8±4.2) GPa,涂层与基体的结合力为56 N;在压入载荷为0.49~9.8 N下,Vikers压痕表面以及横断面均未观察到微裂纹,反映其具有较高的压痕韧性。采用动电位极化、电化学阻抗谱、恒电位极化和电容测量(Mott-Schottky)等多种电化学表征技术,对Ta2N涂层在Ringer's生理溶液中的电化学腐蚀行为进行了深入研究,并从钝化膜组成、致密性和半导体特性3个方面探讨了涂层的腐蚀防护机理。结果表明,在Ringer's生理溶液中,Ta2N涂层表面形成的钝化膜更加致密,其腐蚀抗力明显优于Ti-6Al-4V合金。XPS分析结果表明,在较低的极化电位下,Ta2N涂层的钝化膜主要由TaOxNy构成,随着外加极化电位的升高,其进一步氧化形成Ta2O5;电容测试结果表明,Ta2N涂层表面所生成的钝化膜具有n型半导体特征,其施主浓度和载流子扩散系数明显低于Ti-6Al-4V 合金表面生成的钝化膜。

关键词 Ta-N涂层Ti-6Al-4V合金电化学腐蚀钝化膜半导体特性    
Abstract

Due to its combination of outstanding characteristics, such as superior biocompatibility, excellent mechanical properties as well as good corrosion resistance, Ti-6Al-4V alloy has gained much attention as one of the most popular load-bearing biomedical metals in the area of orthopedic and dental. Unfortunately, Ti-6Al-4V alloy suffers from the localized corrosion damage in human body ?uids containing high chloride ion concentrations, which leads to the release of metal ions into the human body. The released ions (e.g., Al and V) are found to not only cause allergic and toxic reactions but also exhibit potential negative effects on osteoblast behavior. To improve the corrosion resistance of Ti-6Al-4V alloy in simulated body ?uids, a 40 μm thick Ta2N nanocrystalline coating with an average grain size of 12.8 nm was engineered onto a Ti-6Al-4V substrate using a double cathode glow discharge technique. The hardness and elastic modulus of the Ta2N coating were determined to be (32.1±1.6) GPa and (294.8±4.2) GPa, respectively, and the adhesion strength of the coating deposited on Ti-6Al-4V substrate was found to be 56 N. There is no evidence of crack formation within the coating under loads ranging from 0.49 N to 9.8 N, implying that the Ta2N nanocrystalline coating has a high contact damage resistance. Moreover, the corrosion resistance of the Ta2N nanocrystalline coating is significantly greater than that of Ti-6Al-4V alloy when tested in naturally aerated Ringer's solution at 37 ℃. This is due to that the passive film developed on the coating has superior compactness compared with that formed on the uncoated Ti-6Al-4V alloy. XPS analysis indicated that at a low polarized potential, the passive film consisted of TaOxNy, which would be converted to Ta2O5 at a higher polarized potential. The analysis of Mott-Schottky curves suggested that the passive film formed on the coating exhibits n-type semiconductor properties and, as such, the density and diffusivity of carrier for the coating was considerably lower than that for the uncoated Ti-6Al-4V alloy.

Key wordsTa-N coating    Ti-6Al-4V alloy    electrochemical corrosion    passive film    semiconductor property
收稿日期: 2017-06-21     
基金资助:资助项目 国家自然科学基金项目Nos.51374130和51675267及国家自然科学基金重点项目No.51635004
作者简介:

作者简介 徐 江,男,1973年生,教授,博士

图1  Ta2N涂层的XRD谱
图2  Ta2N涂层横截面的SEM像及对应的EDS元素面扫描图像
图3  Ta2N涂层的TEM明场像、TEM暗场像、晶粒大小尺寸统计分布、SAED花样和HRTEM像
图4  Ta2N纳米晶涂层中间区域横断面TEM明场像、涂层与基体界面区域横截面的TEM明场像
图5  Ta2N涂层与Ti-6Al-4V合金的纳米压入载荷-位移曲线
图6  Ta2N涂层在不同载荷下的显微压痕形貌及Ta2N涂层在9.80 N载荷下显微压痕的表面和截面形貌
图7  Ta2N涂层声发射曲线和划痕的SEM像
图8  Ta2N涂层和Ti-6Al-4V合金在Ringer's溶液中的动电位极化曲线
图9  Ta2N涂层和Ti-6Al-4V合金在Ringer's溶液中浸泡不同时间后的EIS
Sample Ecorr βa -βc icorr ipass
V (vs SCE) mVdecade-1 mVdecade-1 Acm-2 Acm-2
Ta2N coating -0.12±0.01 305.16±13.44 120.63±6.91 (6.76±0.51)×10-9 (4.55±0.31)×10-8
Ti-6Al-4V -0.24±0.01 158.08±9.03 116.48±7.34 (4.20±0.23)×10-7 (9.86±0.34)×10-6
表1  Ta2N涂层 和Ti-6Al-4V合金在Ringer's溶液中动电位极化测试分析结果
图10  Ta2N涂层浸泡1、24、72和120 h及Ti-6Al-4V合金浸泡1 h后的等效拟合电路图,以及Ti-6Al-4V合金浸泡24、72和120 h后的等效拟合电路图
Immersion time Rs Qp n Cp Rp χ2
h Ωcm2 10-6 Ω-1cm-2sn μFcm-2 Ωcm2
1 34.74±0.35 5.72±0.05 0.941±0.002 3.35±0.13 (4.70±0.31)×106 6.33×10-4
24 28.82±0.61 5.80±0.09 0.922±0.003 2.78±0.09 (7.20±0.36)×106 5.17×10-4
72 65.25±0.71 2.91±0.03 0.932±0.002 1.56±0.05 (8.54±0.39)×106 1.36×10-3
120 47.46±0.64 1.97±0.02 0.936±0.002 1.04±0.03 (1.04±0.10)×107 2.33×10-3
表2  Ta2N涂层在Ringer's溶液中浸泡不同时间的EIS拟合分析结果
Immersion time Rs Qop nop Rop Cib Rib
h Ωcm2 10-5 Ω-1cm-2sn 105 Ωcm2 10-5 Fcm-2 Ωcm2
24 24.51±0.18 4.24±0.50 0.815±0.011 1.22±0.06 2.56±0.25 (1.17±0.09)×106
72 27.80±0.22 3.59±0.32 0.844±0.008 1.34±0.04 3.81±0.45 (8.56±0.13)×105
120 30.69±0.20 3.47±0.17 0.845±0.004 1.33±0.03 5.01±0.46 (7.51±0.14)×105
表3  Ti-6Al-4V合金在Ringer's溶液中浸泡不同时间的EIS拟合分析结果
图11  在0.8 V电压下Ta2N涂层和Ti-6Al-4V合金在Ringer's溶液中的lgi~lgt双对数曲线
图12  Ta2N涂层在Ringer's溶液中0.2和0.8 V下恒电位极化1 h后生成的钝化膜的XPS谱
图13  Ta2N涂层和Ti-6Al-4V合金在Ringer's溶液中不同钝化电位下形成的钝化膜的Mott-Schotty曲线
图14  Ta2N 涂层和Ti-6Al-4V合金在Ringer's溶液中钝化膜的施主密度Nd和成膜电位Ef的指数衰变拟合曲线
Sample Potential / V Nd / 1019 cm-3 Efb / V δsc / nm
Ta2N coating 0.4 1.48 -1.50 18.85
0.6 1.10 -1.49 22.93
0.8 0.80 -1.47 28.02
1.0 0.62 -1.48 33.27
Ti-6Al-4V 0.4 11.13 -1.15 9.61
0.6 5.92 -0.90 12.96
0.8 3.42 -0.80 17.61
1.0 2.20 -0.78 23.16
表4  Ta2N 涂层和Ti-6Al-4V基体在Ringer's溶液中钝化膜电容测试分析结果
[1] Geetha M, Singh A K, Asokamani R, et al.Ti based biomaterials, the ultimate choice for orthopaedic implants—A review[J]. Prog. Mater. Sci., 2009, 54: 397
[2] Zaffe D, Bertoldi C, Consolo U.Element release from titanium devices used in oral and maxillofacial surgery[J]. Biomaterials, 2003, 24: 1093
[3] Matusiewicz H.Potential release of in vivo trace metals from metallic medical implants in the human body: From ions to nanoparticles—A systematic analytical review[J]. Acta Biomater., 2014, 10: 2379
[4] Rahilly G, Price N.Current products and practice nickel allergy and orthodontics[J]. J. Orthod., 2003, 30: 171
[5] Kumazawa R, Watari F, Takashi N, et al.Effects of Ti ions and particles on neutrophil function and morphology[J]. Biomaterials, 2002, 23: 3757
[6] Souto R M, Laz M M, Reis R L.Degradation characteristics of hydroxyapatite coatings on orthopaedic TiAlV in simulated physiological media investigated by electrochemical impedance spectroscopy[J]. Biomaterials, 2003, 24: 4213
[7] Leit?o E, Sa C, Silva R A, et al.Electrochemical and surface modifications on N+-ion implanted Ti-6Al-4V immersed in HBSS[J]. Corros. Sci., 1995, 37: 1861
[8] Jiang P L, Lin L X, Zhang F, et al.Electrochemical construction of micro-nano spongelike structure on titanium substrate for enhancing corrosion resistance and bioactivity[J]. Electrochim. Acta, 2013, 107: 16
[9] Liu G H, Wang J, Yang S H, et al.Effect of a porous tantalum rod on early and intermediate stages of necrosis of the femoral head[J]. Biomed. Mater., 2010, 5: 065003
[10] Zitter H, Plenk H Jr.The electrochemical behavior of metallic implant materials as an indicator of their biocompatibility[J]. Biomed. J. Mater. Res, 1987, 21: 881
[11] Leng Y X, Sun H, Yang P, et al. Biomedical properties of tantalum nitride films synthesized by reactive magnetron sputtering [J]. Thin. Solid Films, 2001, 398-399: 471
[12] Kokubo T, Takadama H.How useful is SBF in predicting in vivo bone bioactivity[J]. Biomaterials, 2006, 27: 2907
[13] Zhang Y M, Chai F, Hornez J C, et al.The corrosion and biological behaviour of titanium alloys in the presence of human lymphoid cells and MC3T3-E1 osteoblasts[J]. Biomed. Mater, 2009, 4: 015004
[14] Lei W W, Liu D, Zhang J, et al.Direct synthesis and characterization of single-phase tantalum nitride (Ta2N) nanocrystallites by dc arc discharge[J]. J. Alloys Compd., 2008, 459: 298
[15] Cheng H, Hon M.Texture formation in titanium nitride films prepared by chemical vapor deposition[J]. J. Appl. Phys., 1996, 79: 8047
[16] Xu J, Li Z Y, Xu S, et al.A nanocrystalline zirconium carbide coating as a functional corrosion-resistant barrier for polymer electrolyte membrane fuel cell application[J]. J. Power Sources, 2015, 297: 359
[17] Musil J, Jirout M.Toughness of hard nanostructured ceramic thin films[J]. Surf. Coat. Technol., 2007, 201: 5148
[18] Hogmark S, Jacobson S, Larsson M.Design and evaluation of tribological coatings[J]. Wear, 2000, 246: 20
[19] Kannan A R S, Muralidharan S, Sarangapani K B, et al. Corrosion and anodic behaviour of zinc and its ternary alloys in alkaline battery electrolytes[J]. J. Power Sources, 1995, 57: 93
[20] Sun S, Podlaha E J.Electrodeposition of Mo-rich, MoNi alloys from an aqueous electrolyte[J]. J. Electrochem. Soc., 2012, 159: D97
[21] Alves V A, Reis R Q, Santos I C B, et al. In situ impedance spectroscopy study of the electrochemical corrosion of Ti and Ti-6Al-4V in simulated body fluid at 25 ℃ and 37 ℃[J]. Corros. Sci., 2009, 51: 2473
[22] Jiang Z L, Dai X, Middleton H.Effect of silicon on corrosion resistance of Ti-Si alloys[J]. Mater. Sci. Eng., 2011, B176: 79
[23] Vasilescu C, Drob S I, Moreno J M C, et al. Long-term corrosion resistance of new Ti-Ta-Zr alloy in simulated physiological fluids by electrochemical and surface analysis methods[J]. Corros. Sci., 2015, 93: 310.
[24] Macdonald D D, Urquidi-Macdonald M.Theory of steady-state passive films[J]. J. Electrochem. Soc., 1990, 137: 2395
[25] Chang C C, Jeng J S, Chen J S.Microsteuctural and electrical characteristics of reactively sputtered Ta-N thin films[J]. Thin Solid Films, 2002, 413: 46
[26] Lamour P, Fioux P, Ponche A, et al.Direct measurement of the nitrogen content by XPS in self-passivated TaNx thin films[J]. Surf. Interface Anal., 2008, 40: 1430
[27] Olefjord I, Wegrelius L.The influence of nitrogen on the passivation of stainless steels[J]. Corros. Sci., 1996, 38: 1203
[28] Feng Z C, Cheng X Q, Dong C F, et al.Passivity of 316L stainless steel in borate buffer solution studied by Mott-Schottky analysis, atomic absorption spectrometry and X-ray photoelectron spectroscopy[J]. Corros. Sci., 2010, 52: 3646
[29] Jovic V D, Barsoum M W.Corrosion behavior and passive film characteristics formed on Ti, Ti3SiC2, and Ti4AlN3 in H2SO4 and HCl[J]. J. Electrochem. Soc., 2004, 151: B71
[30] Kerrec O, Devilliers D, Grout H, et al.Dielectric properties of anodic oxide films on tantalum[J]. Electrochim. Acta, 1995, 40: 719
[31] Silva R A, Walls M, Rondot B, et al.Electrochemical and microstructural studies of tantalum and its oxide films for biomedical applications in endovascular surgery[J]. J. Mater. Sci. Mater. Med., 2002, 13: 495
[32] Schneider M, Schroth S, Schilm J, et al.Micro-EIS of anodic oxide films on titanium for capacitor applications[J]. Electrochim. Acta, 2009, 54: 2663
[33] Macdonald D D.The point defect model for the passive state[J]. J. Electrochem. Soc., 1992, 139: 3434
[34] Kong D S, Lu W H, Feng Y Y, et al.Studying on the point-defect-conductive property of the semiconducting anodic films on titanium[J]. J. Electrochem. Soc., 2009, 156: C39
[35] Guo H X, Lu B T, Luo J T.Study on passivation and erosion-enhanced corrosion resistance by Mott-Schottky analysis[J]. Electrochim. Acta, 2006, 52: 1108
[36] Mandonald D D.The history of the point defect model for the passive state: A brief review of film growth aspects[J]. Electrochim. Acta, 2011, 56: 1761
[37] Ye W, Li Y, Wang F H.Effects of nanocrystallization on the corrosion behavior of 309 stainless steel[J]. Electrochim. Acta, 2006, 51: 4426
[1] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[2] 汤雁冰, 沈新旺, 刘志红, 乔岩欣, 杨兰兰, 卢道华, 邹家生, 许静. 激光选区熔化Inconel 718合金在NaOH溶液中的腐蚀行为[J]. 金属学报, 2022, 58(3): 324-333.
[3] 黄一川, 王清, 张爽, 董闯, 吴爱民, 林国强. 用于燃料电池双极板的不锈钢成分优化[J]. 金属学报, 2021, 57(5): 651-664.
[4] 吕晨曦, 孙阳庭, 陈斌, 蒋益明, 李劲. 恒电位脉冲技术对317L不锈钢点蚀行为及耐点蚀性能的影响[J]. 金属学报, 2021, 57(12): 1607-1613.
[5] 李恺强, 杨璐嘉, 徐云泽, 王晓娜, 黄一. SO42-对模拟孔隙液中Q235B钢筋腐蚀行为的影响[J]. 金属学报, 2019, 55(4): 457-468.
[6] 范丽, 陈海龑, 董耀华, 李雪莹, 董丽华, 尹衍升. 激光熔覆铁基合金涂层在HCl溶液中的腐蚀行为[J]. 金属学报, 2018, 54(7): 1019-1030.
[7] 王垚,李春福,林元华. Cr对Fe-Cr合金耐蚀性能影响的电子理论研究[J]. 金属学报, 2017, 53(5): 622-630.
[8] 夏大海, 宋诗哲, 王俭秋, 骆静利. 690和800合金在高温高压水中硫致腐蚀失效研究进展[J]. 金属学报, 2017, 53(12): 1541-1554.
[9] 张金虎,徐东生,王云志,杨锐. 位错对Ti-6Al-4V合金α相形核及微织构形成的影响*[J]. 金属学报, 2016, 52(8): 905-915.
[10] 刘小龙,孙成奇,周砚田,洪友士. 微结构和应力比对Ti-6Al-4V高周和超高周疲劳行为的影响*[J]. 金属学报, 2016, 52(8): 923-930.
[11] 朱莉娜,邓彩艳,王东坡,胡绳荪. 表面粗糙度对Ti-6Al-4V合金超高周疲劳性能的影响*[J]. 金属学报, 2016, 52(5): 583-591.
[12] 陈永君, 胡小刚, 羌建兵, 董闯. 准晶磨料的“碾抹”特性对软金属表面的平整性、硬度及耐蚀性的影响*[J]. 金属学报, 2016, 52(10): 1353-1362.
[13] 朴楠,陈吉,尹成江,孙成,张星航,武占文. 超细晶304L不锈钢在含Cl-溶液中点蚀行为的研究[J]. 金属学报, 2015, 51(9): 1077-1084.
[14] 王勇, 郑玉贵, 王建强, 李美玲, 沈军. 铁基非晶涂层在NaCl和H2SO4溶液中的钝化行为[J]. 金属学报, 2015, 51(1): 49-56.
[15] 刘莉, 李瑛, 王福会. 钝性纳米金属材料的电化学腐蚀行为研究:钝化膜生长和局部点蚀行为*[J]. 金属学报, 2014, 50(2): 212-218.