Please wait a minute...
金属学报  2017, Vol. 53 Issue (10): 1331-1336    DOI: 10.11900/0412.1961.2017.00233
  研究论文 本期目录 | 过刊浏览 |
高氮无镍不锈钢接骨板的轻量化设计及生物力学研究:厚度减薄的影响
任伊宾1, 赵浩川1,2, 杨柯1()
1 中国科学院金属研究所 沈阳 110016
2 中国航发贵州黎阳航空动力有限公司 贵阳 550014
Study on Lightweight Design and Biomechanical Property of High Nitrogen Nickel Free Stainless Steel Plate: Effect of Thickness Thinning
Yibin REN1, Haochuan ZHAO1,2, Ke YANG1()
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 AECC Guizhou Liyang Aviation Power Co., LTD, Guiyang 550014, China
引用本文:

任伊宾, 赵浩川, 杨柯. 高氮无镍不锈钢接骨板的轻量化设计及生物力学研究:厚度减薄的影响[J]. 金属学报, 2017, 53(10): 1331-1336.
Yibin REN, Haochuan ZHAO, Ke YANG. Study on Lightweight Design and Biomechanical Property of High Nitrogen Nickel Free Stainless Steel Plate: Effect of Thickness Thinning[J]. Acta Metall Sin, 2017, 53(10): 1331-1336.

全文: PDF(1738 KB)   HTML
  
摘要: 

采用有限元方法模拟研究了高氮无镍不锈钢接骨板厚度减薄对其力学行为的影响规律。结果表明,接骨板厚度减薄18%以内,其抗弯能力、抗拉能力和抗压能力均优于传统尺寸的316L不锈钢接骨板。通过12周动物骨折模型研究了轻量化高氮无镍不锈钢骨板对骨折愈合后的生物力学的影响。结果表明,厚度减薄约14%的高氮无镍不锈钢接骨板固定兔子骨折股骨更有利于骨折的愈合和恢复。

关键词 高氮无镍不锈钢轻量化生物力学有限元    
Abstract

High nitrogen nickel free stainless steel (HNNFSS) has begun to be used in clinic, which possesses excellent mechanical properties, corrosion resistance and biocompatibility. Especially its strength is two times more than that of the conventional 316L stainless steel, but this advantage is not fully used in optimization of both the structure and the size of the implant devices. In this work, the effect of thickness change of HNNFSS bone plate on the biomechanical behavior of bone plate was studied by means of finite element analysis. The result showed that the resistances to bending, tension and compression of HNNFSS plate are all better than those of 316L plate when its thickness is thinned less than 18%. The internal fixation of the lightweight HNNFSS plate was also studied by a 12 weeks rabbit femur fracture model and the result showed that the HNNFSS plate with about 14% thickness thinning could promote the healing and reconstruction of bone fracture of rabbit femur in comparison with 316L plate.

Key wordshigh nitrogen nickel free stainless steel    lightweight    biomechanics    finite element
收稿日期: 2017-06-16     
ZTFLH:  R318.08  
基金资助:国家自然科学基金项目No.31370976
作者简介:

作者简介 任伊宾,男,1975年生,副研究员,博士

Biomedical metal Condition Yield strength
MPa
Tensile strength
MPa
Elongation
%
316L stainless steel[20] Annealed ≥190 ≥490~690 ≥40
Cold deformation ≥600 ≥860~1100 ≥12
Ti-6Al-4V[21] Annealed ≥830 ≥895 ≥10
HNNFSS (ASTM)[22] Annealed ≥517 ≥827 ≥30
Cold deformation ≥1241 ≥1379 ≥12
HNNFSS (IMR, CAS)[8,19]
Annealed 616 1032 59
10% cold deformation 990 1180 42
30% cold deformation 1410 1470 20
表1  高氮无镍不锈钢和临床常用医用金属材料力学性能对比[8,19-22]
图1  研究用不锈钢接骨板尺寸
Material Condition E
GPa
Poisson ratio Density
kgm-3
Friction coefficient True strain True stress
MPa
HNNFSS 20% cold rolled 189 0.27 7715 0.2 0.0064 0.1451 0.3026 1207.7 1432.9 1675.5
316L 20% cold rolled 200 0.30 7800 0.2 0.0040 0.1506 0.1645 800.0 908.0 912.1
表2  研究用不锈钢接骨板的材料参数
图2  有限元模拟的316L不锈钢接骨板和不同厚度高氮无镍不锈钢接骨板三点弯曲时的载荷-位移曲线
图3  316L不锈钢接骨板和不同厚度高氮无镍不锈钢接骨板三点弯曲时应力云图
图4  有限元模拟的316L不锈钢接骨板和不同厚度高氮无镍不锈钢接骨板单向拉伸时的载荷-位移曲线
图5  有限元模拟的316L不锈钢接骨板和不同厚度高氮无镍不锈钢接骨板单向压缩时的载荷-位移曲线
图6  316L不锈钢接骨板和轻量化的高氮无镍不锈钢接骨板固定骨折股骨12周后,愈合股骨与原始股骨的三点弯曲载荷-位移曲线
[1] Haudrechy P, Mantout B, Frappaz A, et al.Nickel release from stainless steel[J]. Contact Dermat., 1997, 37: 113
[2] Thyssen J P, Uter W, McFadden J, et al. The EU nickel directive revisited-future steps towards better protection against nickel allergy[J]. Contact Dermat., 2011, 64: 121
[3] Biodur?108 Alloy (Nickel-free high-nitrogen austenitic stainless steel alloy) [J]. Alloy Digest, 1999, (8): SS-757
[4] Gebeau R C, Brown R S.Biomedical implant alloy[J]. Adv. Mater. Process., 2001, 159: 46
[5] Yang K, Ren Y B.Nickel-free austenitic stainless steels for medical applications[J]. Sci. Technol. Adv. Mater., 2010, 11: 014105
[6] Wan P, Ren Y B, Zhang B C, et al.Effect of nitrogen on biocorrosion behavior of high nitrogen nickel-free stainless steel in different simulated body fluids[J]. Mater. Sci. Eng., 2012, C32: 510
[7] Ren Y B, Zhao H C, Liu W P, et al.Effect of cold deformation on pitting corrosion of 00Cr18Mn15Mo2N0.86 stainless steel for coronary stent application[J]. Mater. Sci. Eng., 2016, C60: 293
[8] Ren Y B, Wan P, Liu F, et al.In vitro study on a new high nitrogen nickel-free austenitic stainless steel for coronary stents[J]. J. Mater. Sci. Technol., 2011, 27: 325
[9] Montanaro L, Cervellati M, Campoccia D, et al.No genotoxicity of a new nickel-free stainless steel[J]. Int. J. Artif. Organs, 2005, 28: 58
[10] Fini M, Giavaresi G, Giardino R, et al.A new austenitic stainless steel with a negligible amount of nickel: An in vitro study in view of its clinical application in osteoporotic bone[J]. J. Biomed. Mater. Res., 2004, 71B: 30
[11] Tschon M, Fini M, Giavaresi G, et al.Soft tissue response to a new austenitic stainless steel with a negligible nickel content[J]. Int. J. Artif. Organs, 2005, 28: 1003
[12] Kraft C N, Burian B, Perlick L, et al.Impact of a nickel-reduced stainless steel implant on striated muscle microcirculation: A comparative in vivo study[J]. J. Biomed. Mater. Res., 2001, 57A: 404
[13] Ren Y B, Yang K, Zhang B C.In vitro study of platelet adhesion on medical nickel-free stainless steel surface[J]. Mater. Lett., 2005, 59: 1785
[14] Wan P, Ren Y B, Zhang B C, et al.Effect of nitrogen on blood compatibility of nickel-free high nitrogen stainless steel for biomaterial[J]. Mater. Sci. Eng., 2010, C30: 1183
[15] Fini M, Aldini N N, Torricelli P, et al.A new austenitic stainless steel with negligible nickel content: An in vitro and in vivo comparative investigation[J]. Biomaterials, 2003, 24: 4929
[16] Alvarez K, Hyun S K, Nakano T, et al.In vivo osteocompatibility of lotus-type porous nickel-free stainless steel in rats[J]. Mater. Sci. Eng., 2009, C29: 1182
[17] Wang S T, Yang K, Shan Y Y, et al.Effects of cold deformation on microstructure and mechanical behavior of a high nitrogen austenitic stainless steel[J]. Acta Metall. Sin., 2007, 43: 713(王松涛, 杨柯, 单以银等. 冷变形对高氮奥氏体不锈钢组织与力学行为的影响[J]. 金属学报, 2007, 43: 713)
[18] Wang S T, Yang K, Shan Y Y, et al.Study of cold deformation behaviors of a high nitrogen austenitic stainless steel and 316L stainless steel[J]. Acta Metall. Sin., 2007, 43: 171(王松涛, 杨柯, 单以银等. 高氮奥氏体不锈钢与316L不锈钢的冷变形行为研究[J]. 金属学报, 2007, 43: 171)
[19] Zhao H C, Ren Y B, Dong J H, et al.Effect of cold deformation on the friction-wear property of a biomedical nickel-free high-nitrogen stainless steel[J]. Acta Metall. Sin.(Engl. Lett.), 2016, 29: 217
[20] ISO. ISO 5832-1: 2007 Implants for surgery-metallic materials, Part 1: Wrought stainless steel[S]. ISO, 2007
[21] ISO. ISO 5832-3: 1996 Implants for surgery-Metallic materials, Part 3: Wrought titanium 6-aluminium 4-vanadium alloy[S]. ISO, 1996
[22] ASTM. ASTM F2229: 2002 Standard specification for wrought, nitrogen strengthened 23manganese-21chromium-1molybdenum low-nickel stainless steel alloy bar and wire for surgical implants (UNS S29108)[S]. ASTM, 2002
[23] Bai F D, Liang B J, Zhu X H, et al.Study on biomechanics of stress shielding effects of fixed compression plate under loaded condition[J]. J. Norman Bethune Univ. Med. Sci., 1998, 24: 268.(白凤德, 梁铂坚, 朱兴华等. 加压钢板内固定负重状态下应力遮挡效应的生物力学实验研究[J]. 白求恩医科大学学报, 1998, 24: 268)
[24] Zhu X H, Wang X Y.Study on the stress shielding effects in internal fixation of fracture[J]. Test Technol. Test Mach., 1996, 36(3-4): 18(朱兴华, 王晓迎. 骨折内固定应力遮挡率研究[J]. 试验技术与试验机, 1996, 36(3-4): 18)
[25] Fang H, Zhu J M, Chen X G, et al.Clinical application of a new overlapping bone plate[J]. Shanghai J. Biomed. Eng., 2003, 24(4): 29(方浩, 朱建民, 陈新刚等. 新型迭形接骨板的临床应用[J]. 上海生物医学工程, 2003, 24(4): 29)
[1] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[2] 李少杰, 金剑锋, 宋宇豪, 王明涛, 唐帅, 宗亚平, 秦高梧. “工艺-组织-性能”模拟研究Mg-Gd-Y合金混晶组织[J]. 金属学报, 2022, 58(1): 114-128.
[3] 赵宇宏, 景舰辉, 陈利文, 徐芳泓, 侯华. 装甲防护陶瓷-金属叠层复合材料界面研究进展[J]. 金属学报, 2021, 57(9): 1107-1125.
[4] 李索, 陈维奇, 胡龙, 邓德安. 加工硬化和退火软化效应对316不锈钢厚壁管-管对接接头残余应力计算精度的影响[J]. 金属学报, 2021, 57(12): 1653-1666.
[5] 陈永君, 白妍, 董闯, 解志文, 燕峰, 吴迪. 基于有限元分析的准晶磨料强化不锈钢表面钝化行为[J]. 金属学报, 2020, 56(6): 909-918.
[6] 王霞, 王维, 杨光, 王超, 任宇航. 激光沉积薄壁结构热力演化的尺寸效应[J]. 金属学报, 2020, 56(5): 745-752.
[7] 易红亮,常智渊,才贺龙,杜鹏举,杨达朋. 热冲压成形钢的强度与塑性及断裂应变[J]. 金属学报, 2020, 56(4): 429-443.
[8] 姜霖, 张亮, 刘志权. Al中间层和Ni(V)过渡层对Co/Al/Cu三明治结构靶材背板组件焊接残余应力的影响[J]. 金属学报, 2020, 56(10): 1433-1440.
[9] 李学雄,徐东生,杨锐. 双相钛合金高温变形协调性的CPFEM研究[J]. 金属学报, 2019, 55(7): 928-938.
[10] 马荣耀, 穆鑫, 刘博, 王长罡, 魏欣, 赵林, 董俊华, 柯伟. 静水压力对超纯Al/超纯Fe电偶中超纯Al腐蚀行为的影响[J]. 金属学报, 2019, 55(12): 1593-1605.
[11] 马凯, 张星星, 王东, 王全兆, 刘振宇, 肖伯律, 马宗义. SiC/2009Al复合材料的变形加工参数的优化仿真研究[J]. 金属学报, 2019, 55(10): 1329-1337.
[12] 文舒, 董安平, 陆燕玲, 祝国梁, 疏达, 孙宝德. GH536高温合金选区激光熔化温度场和残余应力的有限元模拟[J]. 金属学报, 2018, 54(3): 393-403.
[13] 刘佳琳, 王玉敏, 张国兴, 张旭, 杨丽娜, 杨青, 杨锐. SiC单纤维增强TC17复合材料横向拉伸性能研究[J]. 金属学报, 2018, 54(12): 1809-1817.
[14] 刘玉, 秦盛伟, 左训伟, 陈乃录, 戎咏华. 全淬透圆柱件淬火应力的有限元模拟及实验验证[J]. 金属学报, 2017, 53(6): 733-742.
[15] 郭舒,韩恩厚,王海涛,张志明,王俭秋. 核电站316L不锈钢弯头应力腐蚀行为的寿命预测[J]. 金属学报, 2017, 53(4): 455-464.