Please wait a minute...
金属学报  2018, Vol. 54 Issue (1): 118-128    DOI: 10.11900/0412.1961.2017.00225
  本期目录 | 过刊浏览 |
基于成分均匀化的层状铸造方法的实验与模拟研究
李军1,2(), 王军格1, 任凤丽1, 葛鸿浩1, 胡侨丹1, 夏明许1, 李建国1
1 上海交通大学材料科学与工程学院 上海 200240
2 上海交通大学高新船舶与深海开发装备协同创新中心 上海 200240
Experimental and Numerical Simulation Study on Layer Casting Method for Composition Homogeneityon Ingot Casting
Jun LI1,2(), Junge WANG1, Fengli REN1, Honghao GE1, Qiaodan HU1, Mingxu XIA1, Jianguo LI1
1 School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2 Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai Jiao Tong University, Shanghai 200240, China
引用本文:

李军, 王军格, 任凤丽, 葛鸿浩, 胡侨丹, 夏明许, 李建国. 基于成分均匀化的层状铸造方法的实验与模拟研究[J]. 金属学报, 2018, 54(1): 118-128.
Jun LI, Junge WANG, Fengli REN, Honghao GE, Qiaodan HU, Mingxu XIA, Jianguo LI. Experimental and Numerical Simulation Study on Layer Casting Method for Composition Homogeneityon Ingot Casting[J]. Acta Metall Sin, 2018, 54(1): 118-128.

全文: PDF(852 KB)   HTML
摘要: 

提出了一种可降低铸锭宏观偏析的铸造工艺:层状铸造(layer casting,LC)。将铸锭分为数个甚至数十个浇包逐次间隔浇注,使每包次浇入的金属液依次、逐层凝固,从而达到降低铸锭中宏观偏析的目的。采用实验与数值模拟相结合的手段验证该工艺的可行性和适用性。分别采用传统铸造工艺和层状铸造工艺制备Al-4.0%Cu (质量分数)小铸锭,采用直读光谱仪测量铸锭中心截面处Cu含量并绘制出对应的宏观偏析图。实验结果表明:采用传统铸造工艺制备的铸锭出现明显的宏观偏析,包括铸锭底部严重的负偏析和顶部正偏析;而采用层状铸造工艺制备的铸锭没有出现大范围严重的宏观偏析,铸锭中心线上最小负偏析和最大正偏析分别降低了24.6%和77.2%,说明层状铸造工艺可一定程度改善铸锭宏观偏析。同时,采用柱状晶-等轴晶混合三相凝固模型对100和13 t钢锭的传统铸造工艺以及层状铸造工艺的宏观偏析的形成进行数值模拟预测。模拟结果表明:采用层状铸造工艺可有效改善大型钢锭中的宏观偏析,并且随着钢锭尺寸的增大,该工艺对宏观偏析的改善效果愈加明显。并对层状铸造工艺抑制宏观偏析的作用机理进行了分析。

关键词 大型铸锭层状铸造宏观偏析数值模拟    
Abstract

Macrosegregation, or compositional heterogeneity, is a very common and serious defect in large steel ingots, which is hard to remove in the following processing procedures. It not only decides the final properties of the product, but also restricts downstream hot working processing severely. This compositional heterogeneity occurs due to the relative motion between the liquid and solid phases during solidification. Therefore, it is necessary to develop an effective method to manufacture large ingots with less macrosegregation. In this work, a novel casting method was proposed to alleviate macrosegregation of large ingots, i.e., layer casting (LC). With this method, alloy melt will be poured into the mould step by step, so that the melt could be solidified layer by layer and the macrosegregation will be alleviated. Both experimental and numerical studies were carried out to verify the feasibility and effectiveness of LC method. Two small Al-4.0%Cu (mass fraction) ingots were cast using two casting methods, conventional casting method, in which melt was cast into mould in one stage, and LC method, in which melt was cast into mould in several stages. Each ingot was sectioned into two parts along the center line, and then the specimens were measured by optical emission spectrometry to obtain the compositional distribution of Cu. Both severe bottom negative segregation and top positive segregation zones were observed in the ingot fabricated by conventional casting method. More homogeneity of compositional distribution was observed in the ingot fabricated by LC method, and the max negative and positive macrosegregation along the center line decreased by 24.6% and 77.2%, respectively. At the same time, a mixed three-phase (equiaxed, columnar and liquid) solidification model was employed to study the solidification processing in large ingots. The macrosegregation formation processes of 100 t and 13 t steel ingots fabricated by both conventional casting and LC methods were numerically simulated. The simulation results indicated that LC method had the capability of alleviating macrosegregation of large steel ingots significantly, compared with conventional casting method. With the increment of ingot size and amount of ladles, LC method had more significant effect on the alleviation of macrosegregation in large ingots. The mechanism of macrosegregation alleviation of LC method was analyzed.

Key wordslarge ingot    layer casting    macrosegregation    numerical simulation
收稿日期: 2017-06-09     
ZTFLH:  TG244.2  
基金资助:国家重点研发计划项目No.2017YFB0305300,国家自然科学基金钢铁联合基金重点项目No.U1660203,国家自然科学基金项目No.51404152和上海市浦江人才支持计划项目No.14PJ1404800
作者简介:

作者简介 李 军,男,1984年生,博士

图1  层状铸造工艺示意图
图2  采用传统铸造工艺和层状铸造工艺制备的Al-4.0%Cu合金铸锭的宏观组织形貌
图3  采用传统铸造工艺和层状铸造工艺制备的铸锭中心截面处宏观偏析分布图
Process Range Standard deviation
Conventional 0.292 0.108
LC 0.137 0.049
表1  采用传统铸造工艺和层状铸造工艺制备的铸锭中心线各处宏观偏析分布特征
图4  采用传统铸造工艺和层状铸造工艺制备的铸锭中心线上宏观偏析分布曲线
图5  100 t Fe-0.2%C钢锭尺寸示意图及相关初始条件和边界条件
图6  传统铸造和层状铸造工艺制备的100 t钢锭凝固的宏观偏析分布图的数值模拟
图7  采用传统铸造工艺和层状铸造工艺制备的100 t钢锭中心线上宏观偏析分布曲线的数值模拟
Simulated ingot Range Standard deviation
Conventional 100 t 0.549 0.183
LC of 5 ladles 100 t 0.208 0.024
LC of 10 ladles 100 t 0.149 0.021
Conventional 13 t 0.381 0.109
LC of 10 ladles 13 t 0.214 0.035
表2  采用传统铸造工艺和层状铸造工艺制备的钢锭中心线上宏观偏析分布特征的数值模拟
图8  采用传统铸造工艺和层状铸造工艺制备的13 t钢锭中心线上宏观偏析分布曲线的数值模拟
图9  浇注0.5 h后传统铸造和层状铸造工艺下凝固过程中钢液流动情况
图10  浇注0.5 h后传统铸造和层状铸造工艺下凝固过程中等轴晶运动情况
[1] Pickering E J.Macrosegregation in steel ingots: The applicability of modelling and characterisation techniques[J]. ISIJ Int., 2013, 53: 935
[2] Du Q, Li D Z, Li Y Y.Quantitative prediction of macrosegregation formation caused by natural convection during solidification of steel casting[J]. Acta Metall. Sin., 2000, 36: 1197(杜强, 李殿中, 李依依. 铸钢件凝固过程中自然对流引起的宏观偏析模拟[J]. 金属学报, 2000, 36: 1197)
[3] Han Z Q, Liu B C.Numerical simulation on channel segregation in vertically unidirectional solidification process[J]. Acta Metall. Sin., 2003, 39: 140(韩志强, 柳百成. 垂直定向凝固条件下通道偏析形成过程的数值模拟[J]. 金属学报, 2003, 39: 140)
[4] Cao H F, Shen H F, Liu B C.Numerical simulation of segregation in channel during horizontal solidification[J]. Acta Metall. Sin., 2005, 41: 917(曹海峰, 沈厚发, 柳百成. 侧向凝固通道偏析的数值模拟[J]. 金属学报, 2005, 41: 917)
[5] Wang T M, Yao S, Zhang X G, et al.Modelling of the thermosolutal convection, shrinkage flow and grain movement during globular equiaxed solidification in a multi-phase system I. Three-phase flow model[J]. Acta Metall. Sin., 2006, 42: 584(王同敏, 姚山, 张兴国等. 等轴球晶凝固多相体系内热溶质对流、补缩流及晶粒运动的数值模拟I. 三相流模型[J]. 金属学报, 2006, 42: 584)
[6] Pickering E J, Chesman C, Al-Bermani S, et al.A comprehensive case study of macrosegregation in a steel ingot[J]. Metall. Mater. Trans., 2015, 46B: 1860
[7] Hebditch D J, Hunt J D.Observations of ingot macrosegregation on model systems[J]. Metall. Trans., 1974, 5: 1557
[8] Maidorn C, Blind D.Solidification and segregation in heavy forging ingots[J]. Nucl. Eng. Des., 1985, 84: 285
[9] Li D Z, Chen X Q, Fu P X, et al.Inclusion flotation-driven channel segregation in solidifying steels[J]. Nat. Commun., 2014, 5: 5572
[10] Wang J Q.Prediction of the centerline shrinkage porosity and optimized design for the hundred-ton heavy ingots [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2012(王佳琪. 百吨级钢锭缩孔疏松预测与工艺优化 [D]. 沈阳: 中国科学院金属研究所, 2012)
[11] Ma X P, Li D Z.Macrosegregation and its formation mechanism in steel ingot with designed local thermal control[J]. ISIJ Int., 2014, 54: 356
[12] Beckermann C.Modelling of macrosegregation: Applications and future needs[J]. Int. Mater. Rev., 2002, 47: 243
[13] Reddy A V, Beckermann C.Modeling of macrosegregation due to thermosolutal convection and contraction-driven flow in direct chill continuous casting of an Al-Cu round ingot[J]. Metall. Mater. Trans., 1997, 28B: 479
[14] El-Bealy M, Fredriksson H.Modeling of the peritectic reaction and macro-segregation in casting of low carbon steel[J]. Metall. Mater. Trans., 1996, 27B: 999
[15] Li W S, Shen H F, Liu B C.Numerical simulation of macrosegregation in steel ingots using a two-phase model[J]. Int. J. Miner. Metall. Mater., 2012, 19: 787
[16] Jia B F.The numerical simulation of solidification process of polygonal ingot by water-cooled mold casting [D]. Hohhot: Inner Mongolia University of Technology, 2014(贾保峰. 水冷模模铸多边形钢锭凝固数值模拟 [D]. 呼和浩特: 内蒙古工业大学, 2014)
[17] Dantzig J A, Rappaz M.Solidification [M]. Lausanne, Switzerland: EPFL Press, 2009: 568
[18] Li X, Noeppel A, Saadi B, et al.Solidification of metallic alloys under magnetic fields[J]. Trans. Indian Inst. Met., 2009, 62: 465
[19] Li J, Wu M, Hao J, et al.Simulation of channel segregation using a two-phase columnar solidification model-Part I: Model description and verification[J]. Comp. Mater. Sci., 2012, 55: 407
[20] Li J, Wu M, Hao J, et al.Simulation of channel segregation using a two-phase columnar solidification model-Part II: Mechanism and parameter study[J]. Comp. Mater. Sci., 2012, 55: 419
[21] Ge H H, Ren F L, Li J, et al.Four-phase dendritic model for the prediction of macrosegregation, shrinkage cavity, and porosity in a 55-ton ingot[J]. Metall. Mater. Trans., 2017, 48A:1139
[22] Cao Y F, Chen Y, Li D Z.Formation mechanism of channel segregation in carbon steels by inclusion flotation: X-ray microtomography characterization and multi-phase flow modeling[J]. Acta Mater., 2016, 107: 325
[23] Tang J J.The key technology of large scale casting based on electroslag remelt [D]. Nanchang: Nanchang University, 2011(唐建军. 基于电渣重熔的大型铸锭成型关键技术研究 [D]. 南昌: 南昌大学, 2011)
[24] Wang H J.Study on a homogenized technology of large diameter ingot of 7075 aluminum alloy [D]. Beijing: University of Science and Technology Beijing, 2015(王海军. 7075合金大直径铸锭均质化技术研究 [D]. 北京: 北京科技大学, 2015)
[25] Hu D Z, Zhou B S, Zhao W Z, et al.Study on the unidirectional solidification of large-sized ingot[J]. Wide Heavy Plate, 1995, 1(1): 11(胡德志, 周碧珊, 赵文忠等. 定向凝固大型铸锭研究[J]. 宽厚板, 1995, 1(1): 11)
[26] Bikas H, Stavridis J, Stavropoulos P, et al.A design framework to replace conventional manufacturing processes with additive manufacturing for structural components: A formula student case study[J]. Procedia CIRP, 2016, 57: 710
[27] Kruth J P, Froyen L, Van Vaerenbergh J, et al.Selective laser melting of iron-based powder[J]. J. Mater. Process. Technol., 2004, 149: 616
[28] Sang B G, Kang X H, Li D Z.A novel technique for reducing macrosegregation in heavy steel ingots[J]. J. Mater. Process. Technol., 2010, 210: 703
[29] Zhang Y T, Chen B, Liu K, et al.Development of low segregation technology[J]. Acta Metall. Sin., 2017, 53: 559(张玉妥, 陈波, 刘奎等. 低偏析技术的发展[J]. 金属学报, 2017, 53: 559)
[30] Tanaka Y, Ishiguro T.Development of high-purity large-scale forgings for energy service[J]. Phys. Status Solidi, 1997, 160A: 305
[31] Tanaka Y, Sato I.Development of high purity large forgings for nuclear power plants[J]. J. Nucl. Mater., 2011, 417: 854
[32] Tu W T, Shen H F, Liu B C.Modelling of macrosegregation in a 231-ton steel ingot with multi-pouring process[J]. Mater. Res. Innov., 2015, 19: 60
[33] Li J, Liu D R, Kang X H, et al.Numerical simulation of delayed pouring technique for a 360 t heavy steel ingot[J]. Mater. Sci. Eng., 2012, 33: 012092
[34] Liu D R, Sang B G, Kang X H, et al.Numerical simulation of macrosegregation in large multiconcentration poured steel ingot[J]. Int. J. Cast Met. Res., 2010, 23: 354
[35] Tu W T, Zhang X, Shen H F, et al.Numerical simulation on multiple pouring process for a 292 t steel ingot[J]. China Found., 2014, 11: 52
[36] Doub V S, Romashkin A N, Malginov A N.Main trends in the development of technology for casting steel into ingots[J]. Metallurgist, 2013, 57: 487
[37] Rappaz M.Modelling of microstructure formation in solidification processes[J]. Int. Mater. Rev., 1989, 34: 93
[38] Wu M H, Ludwig A.A three-phase model for mixed columnar-equiaxed solidification[J]. Metall. Mater. Trans., 2006, 37A: 1613
[39] Li J, Wu M H, Ludwig A, et al.Simulation of macrosegregation in a 2.45-ton steel ingot using a three-phase mixed columnar-equiaxed model[J]. Int. J. Heat Mass Trans., 2014, 72: 668
[40] Li J, Ge H H, Wu M H, et al.A columnar & non-globular equiaxed mixed three-phase model based on thermosolutal convection and grain movement[J]. Acta Metall. Sin., 2016, 52: 1096(李军, 葛鸿浩, Wu M H等. 基于热溶质对流及晶粒运动的柱状晶-非球状等轴晶混合三相模型[J]. 金属学报, 2016, 52: 1096)
[41] Ge H H, Li J, Han X J, et al.Dendritic model for macrosegregation prediction of large scale castings[J]. J. Mater. Process. Technol., 2015, 227: 308
[42] Ma C W, Shen H F, Huang T Y, et al.Numerical simulation of macro-segregation with equiaxed grains movement[J]. Chin. J. Mater. Res., 2004, 18: 232(马长文, 沈厚发, 黄天佑等. 等轴晶移动对宏观偏析影响的数值模拟[J]. 材料研究学报, 2004, 18: 232)
[1] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[3] 张利民, 李宁, 朱龙飞, 殷鹏飞, 王建元, 吴宏景. 交流电脉冲对过共晶Al-Si合金中初生Si相偏析的作用机制[J]. 金属学报, 2023, 59(12): 1624-1632.
[4] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[5] 周小宾, 赵占山, 汪万行, 徐建国, 岳强. 渣-金界面气泡夹带行为数值物理模拟[J]. 金属学报, 2023, 59(11): 1523-1532.
[6] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[7] 冯苗苗, 张红伟, 邵景霞, 李铁, 雷洪, 王强. 耦合热力学相变路径预测Fe-C包晶合金宏观偏析[J]. 金属学报, 2021, 57(8): 1057-1072.
[8] 胡龙, 王义峰, 李索, 张超华, 邓德安. 基于SH-CCT图的Q345钢焊接接头组织与硬度预测方法研究[J]. 金属学报, 2021, 57(8): 1073-1086.
[9] 李子晗, 忻建文, 肖笑, 王欢, 华学明, 吴东升. 热导型等离子弧焊电弧物理特性和熔池动态行为[J]. 金属学报, 2021, 57(5): 693-702.
[10] 杨勇, 赫全锋. 高熵合金中的晶格畸变[J]. 金属学报, 2021, 57(4): 385-392.
[11] 王富强, 刘伟, 王兆文. 铝电解槽中局部阴极电流增大对电解质-铝液两相流场的影响[J]. 金属学报, 2020, 56(7): 1047-1056.
[12] 刘继召, 黄鹤飞, 朱振博, 刘阿文, 李燕. 氙离子辐照后Hastelloy N合金的纳米硬度及其数值模拟[J]. 金属学报, 2020, 56(5): 753-759.
[13] 王波,沈诗怡,阮琰炜,程淑勇,彭望君,张捷宇. 冶金过程中的气液两相流模拟[J]. 金属学报, 2020, 56(4): 619-632.
[14] 许庆彦,杨聪,闫学伟,柳百成. 高温合金涡轮叶片定向凝固过程数值模拟研究进展[J]. 金属学报, 2019, 55(9): 1175-1184.
[15] 戴培元,胡兴,逯世杰,王义峰,邓德安. 尺寸因素对2D轴对称模型计算不锈钢管焊接残余应力精度的影响[J]. 金属学报, 2019, 55(8): 1058-1066.