Please wait a minute...
金属学报  2017, Vol. 53 Issue (12): 1541-1554    DOI: 10.11900/0412.1961.2017.00198
  本期目录 | 过刊浏览 |
690和800合金在高温高压水中硫致腐蚀失效研究进展
夏大海1,2(), 宋诗哲1,2, 王俭秋2(), 骆静利3
1 天津大学材料科学与工程学院 天津市材料复合与功能化重点实验室 天津 300354
2 中国科学院核用材料与安全评价重点实验室 沈阳 110016
3 Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada T6G 1H9
Research Progress on Sulfur-Induced Corrosion of Alloys 690 and 800 in High Temperature and High Pressure Water
Dahai XIA1,2(), Shizhe SONG1,2, Jianqiu WANG2(), Jingli LUO3
1 Tianjin Key Laboratory of Composite and Functional Materials, School of Material Science and Engineering, Tianjin University, Tianjin 300354, China
2 Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3 Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada T6G 1H9
引用本文:

夏大海, 宋诗哲, 王俭秋, 骆静利. 690和800合金在高温高压水中硫致腐蚀失效研究进展[J]. 金属学报, 2017, 53(12): 1541-1554.
Dahai XIA, Shizhe SONG, Jianqiu WANG, Jingli LUO. Research Progress on Sulfur-Induced Corrosion of Alloys 690 and 800 in High Temperature and High Pressure Water[J]. Acta Metall Sin, 2017, 53(12): 1541-1554.

全文: PDF(7141 KB)   HTML
摘要: 

高温高压水中的S对蒸汽发生器合金的腐蚀是最复杂的腐蚀过程之一。本文从热力学计算和实验方面综述了高温高压水中硫致690和800合金腐蚀的研究进展。热力学计算主要以E-pH图、Volt等效图以及离子分布系数曲线展开,计算结果表明,S的价态以及与金属的相互作用主要受温度、pH值以及电极电位的影响,但热力学计算没有考虑S中间产物的影响作用。腐蚀电化学及表面分析结果表明,硫致腐蚀受温度、pH值、含硫离子种类、Cl等其它杂质离子、晶粒取向、合金成分以及应力等多因素影响,多因素之间可能存在复杂的交互作用。合金中Cr、Mo和Cu的加入可在一定程度上抑制硫致腐蚀,而Ni含量的增加则使硫致腐蚀敏感性增加。S更易吸附在材料表面缺陷处引起局部优先溶解,按照晶粒取向(111)<(100)<(110)硫致腐蚀敏感性增大。

关键词 蒸汽发生器690合金800合金硫代硫酸根还原态硫钝化膜    
Abstract

As nuclear power operates at high temperature and high pressure, corrosion is considered as one of the issues that threaten the safe operation, though corrosion rarely occurs. To fully understand the electrochemical behavior of nuclear key materials and manage the corrosion degradation of these materials in a proactive manner, a great deal of work have been undertaken in lab. Some sulfur-related specie can cause corrosion degradation of metal materials. Steam generator (SG) is one of the most important components in nuclear power plant, and alloys 800 and 690 are the most frequently used as SG tubing alloys. Sulfur-induced corrosion of SG alloys in high temperature and high pressure water is one of the most complicated processes. In this paper, the research progress regarding to sulfur-induced corrosion of alloys 690 and 800 was reviewed from the aspects of thermodynamic calculations and experimental. Thermodynamic calculations are mainly presented by E-pH diagrams, volt equivalent diagrams and species distribution curves. It is concluded that the valences of sulfur and their interactions with metal is mainly affected by temperature, solution pH and electrode potential. Experimental data indicate that sulfur induced corrosion is determined by temperature, solution pH, sulfur species, and other impurities like chloride ions, grain orientation, alloy compositions and stress etc. These factors can interact in a very complicated way. Generally, increasing temperature and decreasing solution pH would increase the corrosion degree of SG tubing alloys. Sulfur at the reduced or intermediate oxidation level are more detrimental than complete oxidation level, to the passivity of SG tubing alloys. Chloride ions have a combined effect with thiosulfate on passive film degradation in the case that chloride's adsorption is dominant; this combined effect is not remarkable if the chloride's adsorption is not dominant. Elements like Cr, Mo and Cu in alloys would weaken sulfur adsorption to some extent and therefore inhibit sulfur-induced corrosion, but increasing Ni content would enhance sulfur-induced corrosion. Both compressive and tensile stress would increase the reactivity of a passive surface of SG tubing. Sulfur would more easily adsorb on the metal surface where it has more defects, resulting in an increased dissolution rate. The crystal orientation can enhance the corrosion rate in the order of (111)<(100)<(110).

Key wordssteam generator    alloy 690    alloy 800    thiosulfate    reduced sulfur    passive film
收稿日期: 2017-05-24     
ZTFLH:  O646  
基金资助:国家自然科学基金项目No.51701140及中国科学院核用材料与安全评价重点实验室开放课题项目No.2016NMSAKF02
作者简介:

作者简介 夏大海,男,1984年生,博士

图1  Sads(Fe, Ni, Cr)-Oads(Fe, Ni, Cr)-S-(Fe, Ni, Cr)-H2O在25和300 ℃环境下的E-pH图[17~20]
图2  S-H2O体系25 ℃条件下的Volt等效图[21]
Dissociation Temperature / ℃ H2S H2S2O3 H2S4O6* H2SO3 H2SO4
constant
K1 25 1.108×10-8 2.492×10-1 - 1.602×10-2 3.317×1011
75 1.216×10-8 9.388×10-2 - 5.862×10-3 3.630×109
125 1.011×10-8 3.667×10-2 - 2.736×10-3 9.281×107
175 6.871×10-9 1.427×10-2 - 1.445×10-3 4.075×106
225 3.809×10-9 5.165×10-3 - 7.809×10-4 2.481×105
275 1.661×10-9 1.605×10-3 - 3.951×10-4 1.780×104
300 9.869×10-10 8.241×10-4 - 2.674×10-4 4.861×103
K2 25 1.131×10-13 4.337×10-3 - 6.377×10-8 1.044×10-2
75 1.737×10-12 2.427×10-3 - 2.638×10-8 2.243×10-3
125 1.007×10-11 9.847×10-4 - 8.132×10-9 4.268×10-4
175 3.108×10-11 3.258×10-4 - 2.065×10-9 7.629×10-5
225 6.746×10-11 8.782×10-5 - 4.220×10-10 1.220×10-5
275 1.270×10-10 1.836×10-5 - 6.459×10-11 1.605×10-6
300 1.738×10-10 7.481×10-6 - 2.206×10-11 5.256×10-7
表1  用HSC Chemistry 5 软件计算得到的S相关的二元酸的平衡常数[22]
图3  各种离子分布系数随温度和pH值的变化曲线(热力学计算结果)[22]
图4  Auger能谱测得的S在800合金表面的分布情况[57]
图5  800合金在40和90 ℃ NaS2O3溶液中浸泡后钝化膜的XPS硫精细谱
图6  800合金在含或不含0.075 mol/L S2O32-的NaCl溶液中恒电位极化后的表面形貌[68]
图7  阳极偏析示意图[33]
图8  C型环800合金试样横截面的扫描电化学显微镜(SECM)结果[9,79]
图9  各影响因素之间的相互联系
[1] Nickchi T, Alfantazi A.Kinetics of passive film growth on alloy 800 in the presence of hydrogen peroxide[J]. Electrochim. Acta, 2011, 58: 743
[2] Xia D H, Yang L X.A mechanistic study on semiconductivity conversion of passive films under varying sulfate to chloride concentration ratios[J]. Acta Phys.-Chim. Sin., 2014, 30: 1465(夏大海, 杨丽霞. 不同浓度比的硫酸根和氯离子溶液中钝化膜的半导体特性转变机制研究[J]. 物理化学学报, 2014, 30: 1465)
[3] Choudhary L, Macdonald D D, Alfantazi A.Role of thiosulfate in the corrosion of steels: A review[J]. Corrosion, 2015, 71: 1147
[4] Xia D H, Song S Z, Zhu R K, et al.A mechanistic study on thiosulfate-enhanced passivity degradation of alloy 800 in chloride solutions[J]. Electrochim. Acta, 2013, 111: 510
[5] Xia D H, Zhu R K, Behnamian Y, et al.pH effect on sulfur-induced passivity degradation of alloy 800 in simulated crevice chemistries[J]. J. Electrochem. Soc., 2014, 161: C201
[6] Luo B, Xia D H.Characterization of pH effect on corrosion resistance of nuclear steam generator tubing alloy by in-situ scanning electrochemical microscopy[J]. Acta Phys.-Chim. Sin., 2014, 30: 59(罗兵, 夏大海. 扫描电化学显微镜原位表征pH值对核电蒸汽发生器合金腐蚀行为的影响[J]. 物理化学学报, 2014, 30: 59)
[7] Kappes M, Frankel G S, Sridhar N, et al.Corrosion behavior of carbon steel in acidified, thiosulfate-containing brines[J]. Corrosion, 2012, 68: 872
[8] Xia D H, Behnamian Y, Feng H N, et al.Semiconductivity conversion of alloy 800 in sulphate, thiosulphate, and chloride solutions[J]. Corros. Sci., 2014, 87: 265
[9] Zhu R K, Luo J L.Investigation of stress-enhanced surface reactivity on alloy 800 using scanning electrochemical microscopy[J]. Electrochem. Commun., 2010, 12: 1752
[10] Khalifeh A R, Banaraki A D, Daneshmanesh H, et al.Stress corrosion cracking of a circulation water heater tubesheet[J]. Eng. Fail. Anal., 2017, 78: 55
[11] Mohammadi M, Choudhary L, Gadala I M, et al.Electrochemical and passive layer characterizations of 304L, 316L, and duplex 2205 stainless steels in thiosulfate gold leaching solutions[J]. J. Electrochem. Soc., 2016, 163: C883
[12] Wang Y S, Wu G X, He L, et al.Effect of thiosulfate on metastable pitting of 304L and S32101 in chloride-and thiosulfate-containing environment[J]. Corrosion, 2016, 72: 628
[13] Zakeri M, Naghizadeh M, Nakhaie D, et al.Pit transition potential and repassivation potential of stainless steel in thiosulfate solution[J]. J. Electrochem. Soc., 2016, 163: C275
[14] Murray R C Jr, Cubicciotti D. Thermodynamics of aqueous sulfur species to 300 ℃ and Potential-pH Diagrams[J]. J. Electrochem. Soc., 1983, 130: 866
[15] Kelsall G H, Thompson I.Redox chemistry of H2S oxidation in the british gas stretford process Part I: Thermodynamics of sulphur-water systems at 298 K[J]. J. Appl. Electrochem., 1993, 23: 279
[16] Kelsall G H, Thompson I.Redox chemistry of H2S oxidation by the british gas stretford process Part II: Electrochemical behaviour of aqueous hydrosulphide (HS-) solutions[J]. J. Appl. Electrochem., 1993, 23: 287
[17] Marcus P, Protopopoff E.Potential pH diagrams for sulfur and oxygen adsorbed on nickel in water at 25 and 300 ℃[J]. J. Electrochem. Soc., 1993, 140: 1571
[18] Marcus P, Protopopoff E.Potential-pH diagrams for sulfur and oxygen adsorbed on chromium in water[J]. J. Electrochem. Soc., 1997, 144: 1586
[19] Marcus P, Protopopoff E.Thermodynamics of thiosulfate reduction on surfaces of iron, nickel and chromium in water at 25 and 300 ℃[J]. Corros. Sci., 1997, 39: 1741
[20] Protopopoff E, Marcus P.Potential-pH diagrams for sulfur and hydroxyl adsorbed on copper surfaces in water containing sulfides, sulfites or thiosulfates[J]. Corros. Sci., 2003, 45: 1191
[21] Macdonald D D, Sharifi-Asl S.Volt equivalent diagrams as a means of displaying the electrochemical thermodynamics of the sulfur-water system[J]. Corros. Sci., 2014, 81: 102
[22] Xia D H, Luo J L.Corrosion behavior of alloy 690 in simulated alkaline water chemistries containing sulfur at 300 ℃[J]. Acta Phys.-Chim. Sin., 2015, 31: 467(夏大海, Luo J L.690合金在300 ℃含硫模拟碱性水化学中的腐蚀行为[J]. 物理化学学报, 2015, 31: 467)
[23] Lu B T, Luo J L, Lu Y C.Effects of pH on lead-induced passivity degradation of nuclear steam generator tubing alloy in high temperature crevice chemistries[J]. Electrochim. Acta, 2013, 87: 824
[24] Persaud S Y, Carcea A G, Newman R C.An electrochemical study assisting the interpretation of acid sulfate stress corrosion cracking of NiCrFe alloys[J]. Corros. Sci., 2015, 90: 383
[25] Baes C F Jr, Mesmer R E. The Hydrolysis of Cations[M]. New York: John Wiley & Sons, 1976: 236
[26] Fang Z, Staehle R W.Effects of the valence of sulfur on passivation of alloys 600, 690, and 800 at 25 ℃ and 95 ℃[J]. Corrosion, 1999, 55: 355
[27] Macdonald D D, Roberts B, Hyne J B.Corrosion of carbon steel during cyclical exposure to wet elemental sulphur and the atmosphere[J]. Corros. Sci., 1978, 18: 499
[28] MacDonald D D, Roberts B, Hyne J B. The corrosion of carbon steel by wet elemental sulphur[J]. Corros. Sci., 1978, 18: 411
[29] Maldonado-Zagal S B, Boden P J. Hydrolysis of elemental sulphur in water and its effect on the corrosion of mild steel[J]. Brit. Corros. J. 1982, 17: 116
[30] Kelber J, Seshadri G.Adsorbate-catalyzed anodic dissolution and oxidation at surfaces in aqueous solutions[J]. Surf. Interface Anal., 2001, 31: 431
[31] Jayalakshmi M, Muralidharan V S.Influence of sulfur on passivation of iron in alkali solutions[J]. Corrosion, 1992, 48: 918
[32] Oudar J, Marcus P.Role of adsorbed sulphur in the dissolution and passivation of nickel and nickel-sulphur alloys[J]. Appl. Surf. Sci., 1979, 3: 48
[33] Marcus P, Teissier A, Oudar J.The influence of sulphur on the dissolution and the passivation of a nickel-iron alloy—I. Electrochemical and radiotracer measurements[J]. Corros. Sci., 1984, 24: 259
[34] Elbiache A, Marcus P.The role of molybdenum in the dissolution and the passivation of stainless steels with adsorbed sulphur[J]. Corros. Sci., 1992, 33: 261
[35] Costa D, Marcus P.Modification of passive films [A]. Proceedings of the European Symposium on Modifications of Passive Films[C]. London: The Institute of Materials, 1994: 189
[36] Ando S, Suzuki T, Itaya K.Layer-by-layer anodic dissolution of sulfur-modified Ni (100) electrodes: In situ scanning tunneling microscopy[J]. J. Electroanal. Chem., 1996, 412: 139
[37] Xu H C, Seshadri G, Kelber J A.Effect of sulfur on the oxidation of copper in aqueous solution[J]. J. Electrochem. Soc., 2000, 147: 558
[38] Maurice V, Talah H, Marcus P.Ex situ STM imaging with atomic resolution of Ni(111) electrodes passivated in sulfuric acid[J]. Surf. Sci. Let., 1993, 284: L431
[39] Maurice V, Talah H, Marcus P.A scanning tunneling microscopy study of the structure of thin oxide films grown on Ni (111) single crystal surfaces by anodic polarization in acid electrolyte[J]. Surf. Sci., 1994, 304: 98
[40] Zuili D, Maurice V, Marcus P.Surface structure of nickel in acid solution studied by in situ scanning tunneling microscopy[J]. J. Electrochem. Soc., 2000, 147: 1393
[41] Newman R C, Isaacs H S, Alman B.Effects of sulfur compounds on the pitting behavior of type 304 stainless steel in near-neutral chloride solutions[J]. Corrosion, 1982, 38: 261
[42] Xia D H, Zhu R K, Behnamian Y, et al.Understanding the interaction of thiosulfate with alloy 800 in aqueous chloride solutions using SECM[J]. J. Electroanal. Chem., 2015, 744: 77
[43] Xia D H, Zhou B, Wang J Q, et al.Passivation degradation of alloy 800 on nucleate boiling surface[J]. Corros. Eng. Sci. Technol., 2017, 52: 391
[44] Newman R C.Pitting of stainless alloys in sulfate solutions containing thiosulfate ions[J]. Corrosion, 1985, 41: 450
[45] Frankel G, Thornton G, Street S, et al.Localised corrosion: General discussion[J]. Faraday Discuss., 2015, 180: 381
[46] Lee E H, Kim K M, Kim U C. Effects of reduced sulfur on the corrosion behavior of alloy 600 in high-temperature water [J]. Mater. Sci. Eng., 2007, A449-451: 330
[47] Tribollet B, Kittel J, Meroufel A, et al.Corrosion mechanisms in aqueous solutions containing dissolved H2S. Part 2: Model of the cathodic reactions on a 316L stainless steel rotating disc electrode[J]. Electrochim. Acta, 2014, 124: 46
[48] Zheng Y G, Ning J, Brown B, et al.Investigation of cathodic reaction mechanisms of H2S corrosion using a passive SS304 rotating cylinder electrode[J]. Corrosion, 2016, 72: 1519
[49] Bandy R, Roberge R, Newman R C.Low temperature stress corrosion cracking of Inconel 600 under two different conditions of sensitization[J]. Corros. Sci., 1983, 23: 995
[50] Breimesser M, Ritter S, Seifert H P, et al.Application of electrochemical noise to monitor stress corrosion cracking of stainless steel in tetrathionate solution under constant load[J]. Corros. Sci., 2012, 63: 129
[51] Breimesser M, Ritter S, Seifert H P, et al.Application of the electrochemical microcapillary technique to study intergranular stress corrosion cracking of austenitic stainless steel on the micrometre scale[J]. Corros. Sci., 2012, 55: 126
[52] Telang A, Gill A S, Teysseyre S, et al.Effects of laser shock peening on SCC behavior of alloy 600 in tetrathionate solution[J]. Corros. Sci., 2015, 90: 434
[53] Xia D H, Fan H Q, Yang L X, et al.Semiconductivity conversion of passive films on alloy 800 in chloride solutions containing various concentrations of thiosulfate[J]. J. Electrochem. Soc., 2015, 162: C482
[54] Xia D H, Behnamian Y, Yang L, et al.Semiconductivity of steam generator tubing alloys in simulated crevice chemistries containing lead and sulphur[J]. Corros. Eng. Sci. Technol., 2016, 51: 37
[55] Xia D H, Behnamian Y, Chen X Y, et al.A mechanistic study of sulfur-induced passivity degradation of alloy 800 in a simulated alkaline crevice environment at 300 ℃[J]. J. Solid State Electrochem., 2015, 19: 3567
[56] Xia D H, Sun Y F, Shen C, et al.A mechanistic study on sulfur-induced passivity degradation on alloy 800 in simulated alkaline crevice chemistries at temperatures ranging from 21 ℃ to 300 ℃[J]. Corros. Sci., 2015, 100: 504
[57] Xia D H, Luo J L.Passivity degradation of alloy 800 in simulated crevice chemistries[J]. Trans. Tianjin Univ., 2015, 21: 234
[58] Tsai W T, Lee Z H, Lee J T.Technical note: Electrochemical and SCC behavior of inconel 600 (UNS N06600) in thiosulfate solution[J]. Corrosion, 1989, 45: 883
[59] Lu Y.Localized corrosion of nuclear grade alloy 800 under steam generator layup, startup and operating conditions[J]. AECL Nucl. Rev., 2012, 1: 13
[60] Garner A.Thiosulfate corrosion in paper-machine white water[J]. Corrosion, 1985, 41: 587
[61] Newman R C, Wong W P, Ezuber H, et al.Pitting of stainless steels by thiosulfate ions[J]. Corrosion, 1989, 45: 282
[62] Ho J T, Yu G P.Pitting corrosion of inconel 600 in chloride and thiosulfate anion solutions at low temperature[J]. Corrosion, 1992, 48: 147
[63] Xia D H, Luo J L, Gao Z M, et al.Monitoring the diffusion layer during passive film breakdown on alloy 800 with digital holography[J]. Acta Metall. Sin.(Engl. Lett.), 2015, 28: 1170
[64] Gao Z M, Lu X B, Xia D H, et al.Pitting corrosion mechanism of alloy 800 in simulated crevice chemistries containing thiosulfate[J]. Electrochemistry, 2016, 84: 585
[65] Tsai W T, Wu T F.Pitting corrosion of alloy 690 in thiosulfate-containing chloride solutions[J]. J. Nucl. Mater., 2000, 277: 169
[66] Newman R C, Isaacs H S, Alman B.Effects of sulfur compounds on the pitting behavior of type 304 stainless steel in near-neutral chloride solutions[J]. Corrosion, 1982, 38: 261
[67] Roberge R.Effect of the nickel content in the pitting of stainless steels in low chloride and thiosulfate solutions[J]. Corrosion, 1988, 44: 274
[68] Wu S B, Wang J Q, Song S Z, et al.Factors influencing passivity breakdown on UNS N08800 in neutral chloride and thiosulfate solutions[J]. J. Electrochem. Soc., 2017, 164: C94
[69] Di Bari G A, Petrocelli J V. The effect of composition and structure on the electrochemical reactivity of nickel[J]. J. Electrochem. Soc., 1965, 112: 99
[70] Duret-Thual C, Costa D, Yang W P, et al.The role of thiosulfates in the pitting corrosion of Fe-17Cr alloys in neutral chloride solution: Electrochemical and XPS study[J]. Corros. Sci., 1997, 39: 913
[71] Mulford S J, Tromans D.Crevice corrosion of nickel-based alloys in neutral chloride and thiosulfate solutions[J]. Corrosion, 1988, 44: 891
[72] Bandy R, Roberge R, Newman R C.Low temperature stress corrosion cracking of sensitized Inconel 600 in tetrathionate and thiosulfate solutions[J]. Corrosion, 1983, 39: 391
[73] Tsai W T, Lee Z H, Lee J T, et al.Pitting and stress corrosion cracking behaviour of Inconel 600 alloy in thiosulphate solution[J]. Mater. Sci. Eng., 1989, A118: 121
[74] Tsai M C, Tsai W T, Lee J T.The effect of heat treatment and applied potential on the stress corrosion cracking of alloy 600 in thiosulfate solution[J]. Corros. Sci., 1993, 34: 741
[75] Yonezu A, Kusano R, Chen X.On the mechanism of intergranular stress corrosion cracking of sensitized stainless steel in tetrathionate solution[J]. J. Mater. Sci., 2013, 48: 2447
[76] Laycock N J.Effects of temperature and thiosulfate on chloride pitting of austenitic stainless steels[J]. Corrosion, 1999, 55: 590
[77] Marcus P, Moscatelli M.The role of alloyed molybdenum in the dissolution and the passivation of nickel-molybdenum alloys in the presence of adsorbed sulfur[J]. J. Electrochem. Soc., 1989, 136: 1634
[78] Tomio A, Sagara M, Doi T, et al.Role of alloyed copper on corrosion resistance of austenitic stainless steel in H2S-Cl- environment[J]. Corros. Sci., 2014, 81: 144
[79] Gao Z M, Wang C, Miao W H, et al.Characterization of a stressed passive film using scanning electrochemical microscope and point defect model[J]. Trans. Indian Inst. Met., 2017, 70: 1337
[1] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[2] 徐文国, 郝文江, 李应举, 赵庆彬, 卢炳聿, 郭和一, 刘天宇, 冯小辉, 杨院生. 微量AlTiInconel 690合金高温氧化行为的影响[J]. 金属学报, 2023, 59(12): 1547-1558.
[3] 汤雁冰, 沈新旺, 刘志红, 乔岩欣, 杨兰兰, 卢道华, 邹家生, 许静. 激光选区熔化Inconel 718合金在NaOH溶液中的腐蚀行为[J]. 金属学报, 2022, 58(3): 324-333.
[4] 黄一川, 王清, 张爽, 董闯, 吴爱民, 林国强. 用于燃料电池双极板的不锈钢成分优化[J]. 金属学报, 2021, 57(5): 651-664.
[5] 吕晨曦, 孙阳庭, 陈斌, 蒋益明, 李劲. 恒电位脉冲技术对317L不锈钢点蚀行为及耐点蚀性能的影响[J]. 金属学报, 2021, 57(12): 1607-1613.
[6] 郦晓慧, 王俭秋, 韩恩厚, 郭延军, 郑会, 杨双亮. 690合金在模拟核电高温高压水中的电化学及原位划伤行为研究[J]. 金属学报, 2020, 56(11): 1474-1484.
[7] 李恺强, 杨璐嘉, 徐云泽, 王晓娜, 黄一. SO42-对模拟孔隙液中Q235B钢筋腐蚀行为的影响[J]. 金属学报, 2019, 55(4): 457-468.
[8] 范丽, 陈海龑, 董耀华, 李雪莹, 董丽华, 尹衍升. 激光熔覆铁基合金涂层在HCl溶液中的腐蚀行为[J]. 金属学报, 2018, 54(7): 1019-1030.
[9] 刘锡荣, 张凯, 夏爽, 刘文庆, 李慧. 690合金中三晶交界及晶界类型对碳化物析出形貌的影响[J]. 金属学报, 2018, 54(3): 404-410.
[10] 徐江, 鲍习科, 蒋书运. 纳米晶Ta2N涂层在模拟人体环境中的耐蚀性能研究[J]. 金属学报, 2018, 54(3): 443-456.
[11] 王垚,李春福,林元华. Cr对Fe-Cr合金耐蚀性能影响的电子理论研究[J]. 金属学报, 2017, 53(5): 622-630.
[12] 马颖澈,李硕,郝宪朝,查向东,高明,刘奎. 2种N含量不同的690合金中晶界碳化物及晶界Cr贫化研究*[J]. 金属学报, 2016, 52(8): 980-986.
[13] 王家贞,王俭秋,韩恩厚. 800合金在300 ℃ NaOH和ETA溶液中的腐蚀行为*[J]. 金属学报, 2016, 52(5): 599-606.
[14] 陈永君, 胡小刚, 羌建兵, 董闯. 准晶磨料的“碾抹”特性对软金属表面的平整性、硬度及耐蚀性的影响*[J]. 金属学报, 2016, 52(10): 1353-1362.
[15] 朴楠,陈吉,尹成江,孙成,张星航,武占文. 超细晶304L不锈钢在含Cl-溶液中点蚀行为的研究[J]. 金属学报, 2015, 51(9): 1077-1084.