Please wait a minute...
金属学报  2018, Vol. 54 Issue (1): 109-117    DOI: 10.11900/0412.1961.2017.00196
  本期目录 | 过刊浏览 |
一步电沉积法制备超疏水Cu网及其耐腐蚀和油水分离性能
赵婷婷, 康志新(), 马夏雨
华南理工大学机械与汽车工程学院 国家金属材料近净成形工程技术研究中心 广东省金属新材料制备与成形重点实验室 广州 510640
Fabricating Superhydrophobic Copper Meshes by One-Step Electrodeposition Method and Its Anti-Corrosion and Oil-Water Separation Abilities
Tingting ZHAO, Zhixin KANG(), Xiayu MA
Guangdong Key Laboratory for Advanced Metallic Materials Processing, National Engineering Research Center of Near-Net-Shape Forming for Metallic Materials, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
引用本文:

赵婷婷, 康志新, 马夏雨. 一步电沉积法制备超疏水Cu网及其耐腐蚀和油水分离性能[J]. 金属学报, 2018, 54(1): 109-117.
Tingting ZHAO, Zhixin KANG, Xiayu MA. Fabricating Superhydrophobic Copper Meshes by One-Step Electrodeposition Method and Its Anti-Corrosion and Oil-Water Separation Abilities[J]. Acta Metall Sin, 2018, 54(1): 109-117.

全文: PDF(866 KB)   HTML
摘要: 

用一步电沉积法在Cu网表面制得超疏水膜层,并用FE-SEM、接触角测量仪、EDS、FTIR和XPS表征膜层的形貌、浸润性和化学成分,研究工艺参数对膜层微观结构和浸润性的影响。结果表明,在30 V电压下反应10 min,得到的Cu网表面均匀覆盖着由纳米片聚集成的微米胞,成分为Cu[CH3(CH2)12COO]2,接触角达到最大值156.2°,滚动角低至1°。用动电位极化曲线和油水分离装置分析试样的耐腐蚀和油水分离性能,结果表明,超疏水膜层将基体的腐蚀电流密度从1.50×10-5 A/cm2减小到4.77×10-9 A/cm2,降低约3个数量级,腐蚀电压从-0.177 V提高到-0.141 V。油水分离实验表明,超疏水Cu网经5次循环利用后,油水分离效率仍在95%以上,显示出良好的油水分离能力和循环使用性能。

关键词 一步电沉积法,黄铜网,超疏水,耐腐蚀,油水分离    
Abstract

Special wettability includes superhydrophobic, superhydrophilic, superoleophobic and superoleophilic etc. The superhydrophobic surfaces are governed by the surface chemistry and unique micro/nanostructures. Up to now, numerous methods have been reported in constructing superhydrophobic surfaces including chemical vapor deposition, chemical etching, hydrothermal, sol-gel and so on. Preparing superhydrophobic films on metal surfaces is an effective way to improve the anti-corrosion property of metal substrates. In addition, superhydrophobic films can be used to oil-water separation. In this work, a one-step electrodeposition was applied to prepare superhydrophobic surfaces on copper meshes. The morphology, wettability and chemical composition of the prepared films were characterized by SEM, optical contact angle meter, EDS, FTIR and XPS. The results showed that the surface on copper meshes obtained at 30 V with 10 min was uniformly covered by microcells aggregated by nanosheets. The surfaces of the copper meshes were composed of copper myristate (Cu[CH3(CH2)12COO]2) and reach the maximum contact angle of 156.2° with the rolling angle as low as 1°. The potentiodynamic polarization curves were utilized to analyze the corrosion resistance, which demonstrated that corrosion current densities of the superhydrophobic film was 4.77×10-9 A/cm2, decreased by more than 3 orders of magnitude, and the corrosion potential was 0.036 V more positive compared with the copper substrate. Moreover,the oil-water separation tests showed that the separation efficiency of the film after reused for 5 times maintained above 95%, exhibiting excellent oil-water property and recycle capability.

Key wordsone-step electrodeposition    copper mesh    superhydrophobic    anti-corrosion    oil-water separation
收稿日期: 2017-05-24     
ZTFLH:  TG178  
基金资助:广东省自然科学基金项目No.2015A030313219和广州市科技计划项目科学研究专项No.201510010155
作者简介:

作者简介 康志新,男,1962年生,教授

图1  Cu表面超疏水膜层制备过程示意图
图2  沉积电压为30 V时,不同沉积时间下膜层表面形貌SEM像
图3  电压为30 V时不同的沉积时间下膜层的接触角和滚动角
图4  不同沉积电压下沉积10 min时膜层表面形貌SEM像
图5  在不同电压下沉积10 min时膜层的接触角和滚动角
图6  在30 V电压下沉积10 min时水滴接触角和滚动角图
图7  超疏水膜层的EDS
图8  超疏水膜层和十四酸的FTIR谱
图9  沉积10 min、沉积电压30 V时超疏水膜层的XPS全谱、C1s和O1s谱
图10  电沉积原理示意图
图11  Cu网基体和超疏水膜层在3.5%NaCl溶液中的动电位极化曲线
图12  油水分离过程图
[1] Liu Y, Zhang K T, Yao W G, et al.A facile electrodeposition process for the fabrication of superhydrophobic and superoleophilic copper mesh for efficient oil-water separation[J]. Ind. Eng. Chem. Res., 2016, 55: 2704
[2] Neinhuis C, Barthlott W.Characterization and distribution of water-repellent, self-cleaning plant surfaces[J]. Ann. Bot., 1997, 79: 667
[3] Barthlott W, Neinhuis C.Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997, 202: 1
[4] Liu Q, Chen D X, Kang Z X.One-step electrodeposition process to fabricate corrosion-resistant superhydrophobic surface on magnesium alloy[J]. ACS Appl. Mater. Interfaces, 2015, 7: 1859
[5] Kang Z X, Guo M J.Fabrication of superhydrophobic Ti surface by thermal oxidation and its anticorrosion property[J]. Acta Metall. Sin., 2013, 49: 629(康志新, 郭明杰. 热氧化法制备超疏水Ti表面及其耐腐蚀性[J]. 金属学报, 2013, 49: 629)
[6] Liu C S, Su F H, Liang J Z, et al.Facile fabrication of superhydrophobic cerium coating with micro-nano flower-like structure and excellent corrosion resistance[J]. Surf. Coat. Technol., 2014, 258: 580
[7] Wenzel R N.Resistance of solid surfaces to wetting by water[J]. Ind. Eng. Chem., 1936, 28: 988
[8] Yan L, Li J, Li W J, et al.A photo-induced ZnO coated mesh for on-demand oil/water separation based on switchable wettability[J]. Mater. Lett., 2016, 163: 247
[9] Luo Z Y, Chen K X, Wang J H, et al.Hierarchical nanoparticle-induced superhydrophilic and under-water superoleophobic Cu foam with ultrahigh water permeability for effective oil/water separation[J]. J. Mater. Chem., 2016, 4A: 10566
[10] Wang F J, Lei S, Xu Y, et al.Green approach to the fabrication of superhydrophobic mesh surface for oil/water separation[J]. ChemPhysChem, 2015, 16: 2237
[11] Kong L H, Chen X H, Yu L G, et al.Superhydrophobic cuprous oxide nanostructures on phosphor-copper meshes and their oil-water separation and oil spill cleanup[J]. ACS Appl. Mater. Interfaces, 2015, 7: 2616
[12] Shinde S L, Nanda K K.Facile synthesis of large area porous Cu2O as super hydrophobic yellow-red phosphors[J]. RSC Adv., 2012, 2: 3647
[13] Yin S H, Wu D X, Yang J, et al.Fabrication and surface characterization of biomimic superhydrophobic copper surface by solution-immersion and self-assembly[J]. Appl. Surf. Sci., 2011, 257: 8481
[14] Fan Y H, Chen Z J, Liang J, et al.Preparation of superhydrophobic films on copper substrate for corrosion protection[J]. Surf. Coat. Technol., 2014, 244: 1
[15] Ou J F, Hu W H, Liu S, et al.Superoleophobic textured copper surfaces fabricated by chemical etching/oxidation and surface fluorination[J]. ACS Appl. Mater. Interfaces, 2013, 5: 10035
[16] Qing Y Q, Yang C N, Zhao Q Q, et al.Simple fabrication of superhydrophobic/superoleophobic surfaces on copper substrate by two-step method[J]. J. Alloys Compd., 2017, 695: 1878
[17] Lv Y.Electrodeposited patterning organic luminescent films and their applications for display devices [D]. Changchun: Jilin University, 2013(吕营. 电沉积图案化有机发光薄膜及其在显示器件中的应用 [D]. 长春: 吉林大学, 2013)
[18] Hong B.Study on texture and internal stress of electrodeposited copper film [D]. Shanghai: Shanghai Jiao Tong University, 2008(洪波. 电沉积铜薄膜中织构与内应力的研究 [D]. 上海: 上海交通大学, 2008)
[19] She Z X, Li Q, Wang Z W, et al.Highly anticorrosion, selfcleaning superhydrophobic Ni- Co surface fabricated on AZ91D magnesium alloy[J]. Surf. Coat. Technol., 2014, 251: 7
[20] Zhang X F, Chen R J, Hu J M.Superhydrophobic surface constructed on electrodeposited silica films by two-step method for corrosion protection of mild steel[J]. Corros. Sci., 2016, 104: 336
[21] Chen Z, Hao L M, Chen C L.A fast electrodeposition method for fabrication of lanthanum superhydrophobic surface with hierarchical micro-nanostructures[J]. Colloids Surf., 2012, 401A: 1
[22] Xi J M, Feng L, Jiang L.A general approach for fabrication of superhydrophobic and superamphiphobic surfaces[J]. Appl. Phys. Lett., 2008, 92: 053102
[23] Cassie A B D, Baxter S. Wettability of porous surfaces[J]. Trans. Faraday. Soc., 1944, 40: 546
[24] Chen Z, Hao L M, Chen C L.Simultaneous fabrication of superhydrophobic coatings on cathodic and anodic copper surfaces with Micro/nano- structures[J]. ECS Electrochem. Lett., 2012, 1: D21
[25] Wang S, Feng L, Jiang L.One-step solution-immersion process for the fabrication of stable bionic superhydrophobic surfaces[J]. Adv. Mater., 2006, 18: 767
[26] Zhao T T, Kang Z X.Simultaneously fabricating multifunctional superhydrophobic/superoleophilic coatings by one-step electrodeposition method on cathodic and anodic magnesium surfaces[J]. J. Electrochem. Soc., 2016, 163: D628
[27] Chen Z, Hao L M, Chen A Q, et al.A rapid one-step process for fabrication of superhydrophobic surface by electrodeposition method[J]. Electrochim. Acta, 2012, 59: 168
[28] Crick C R, Gibbins J A, Parkin I P.Superhydrophobic polymer-coated copper-mesh; membranes for highly efficient oil-water separation[J]. J. Mater. Chem., 2013, 1A: 5943
[1] 胡文滨, 张晓雯, 宋龙飞, 廖伯凯, 万闪, 康磊, 郭兴蓬. 共晶高熵合金AlCoCrFeNi2.1H2SO4 溶液中的腐蚀行为[J]. 金属学报, 2023, 59(12): 1644-1654.
[2] 高晗, 刘力, 周笑宇, 周心怡, 蔡汶君, 周泓伶. Ti6Al4V表面微纳结构的制备及生物活性[J]. 金属学报, 2023, 59(11): 1466-1474.
[3] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[4] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[5] 梁良 姜治康 姜长城 谭欢恒. 减少钛表面氧化的阴极电保护激光加工的初步研究[J]. 金属学报, 0, (): 0-0.
[6] 刘丞济 孙文瑶 陈明辉 王福会. 放电等离子烧结Ni20Cr-xAl合金的高温氧化行为[J]. 金属学报, 0, (): 0-0.
[7] 丛鸿达, 王金龙, 王成, 宁珅, 高若恒, 杜瑶, 陈明辉, 朱圣龙, 王福会. 新型无机硅酸盐复合涂层制备及其在高温水蒸气环境的氧化行为[J]. 金属学报, 2022, 58(8): 1083-1092.
[8] 崔振铎, 朱家民, 姜辉, 吴水林, 朱胜利. Ti及钛合金表面改性在生物医用领域的研究进展[J]. 金属学报, 2022, 58(7): 837-856.
[9] 冯凯, 郭彦兵, 冯育磊, 姚成武, 朱彦彦, 张群莉, 李铸国. 激光熔覆高强韧铁基涂层精细组织调控与性能研究[J]. 金属学报, 2022, 58(4): 513-528.
[10] 张世宏, 胡凯, 刘侠, 杨阳. 发电锅炉材料与防护涂层的磨蚀机制与研究展望[J]. 金属学报, 2022, 58(3): 272-294.
[11] 崔洪芝, 姜迪. 高熵合金涂层研究进展[J]. 金属学报, 2022, 58(1): 17-27.
[12] 李晓倩, 王富国, 梁爱民. 喷涂工艺对Ta2O5原位复合钽基纳米晶涂层微观结构及摩擦磨损性能的影响[J]. 金属学报, 2021, 57(2): 237-246.
[13] 高博文, 王美涵, 闫茂成, 赵洪涛, 魏英华, 雷浩. 2024铝合金表面PEDOT涂层的电化学制备及耐腐蚀性能[J]. 金属学报, 2020, 56(11): 1541-1550.
[14] 刘海霞, 陈金豪, 陈杰, 刘光磊. NaCl溶液腐蚀后304不锈钢的射流空蚀特征[J]. 金属学报, 2020, 56(10): 1377-1385.
[15] 冯浩,李花兵,路鹏冲,杨纯田,姜周华,武晓雷. 铜绿假单胞菌对CrCoNi中熵合金微生物腐蚀行为的影响[J]. 金属学报, 2019, 55(11): 1457-1468.