Please wait a minute...
金属学报  2017, Vol. 53 Issue (11): 1511-1520    DOI: 10.11900/0412.1961.2017.00178
  研究论文 本期目录 | 过刊浏览 |
Al薄膜对玻璃纤维增强树脂基复合材料电磁性能的影响
陈育秋1,2, 祖亚培1, 宫骏1, 孙超1(), 王晨3
1 中国科学院金属研究所 沈阳 110016
2 中国科学院大学 北京 100049
3 澳汰尔工程软件(上海)有限公司 上海 200436
Effect of Al Film on the Electromagnetic Properties of Glass Fiber Reinforced Resin Matrix Composite
Yuqiu CHEN1,2, Yapei ZU1, Jun GONG1, Cao SUN1(), Chen WANG3
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Altair Engineering Software (Shanghai) Co., Ltd., Shanghai 200436, China
引用本文:

陈育秋, 祖亚培, 宫骏, 孙超, 王晨. Al薄膜对玻璃纤维增强树脂基复合材料电磁性能的影响[J]. 金属学报, 2017, 53(11): 1511-1520.
Yuqiu CHEN, Yapei ZU, Jun GONG, Cao SUN, Chen WANG. Effect of Al Film on the Electromagnetic Properties of Glass Fiber Reinforced Resin Matrix Composite[J]. Acta Metall Sin, 2017, 53(11): 1511-1520.

全文: PDF(2167 KB)   HTML
摘要: 

利用高频电磁场计算软件FEKO对Al薄膜与玻璃纤维增强树脂基复合材料的电磁波反射率进行了仿真计算。研究了复合材料介电常数实部εr、电损耗角正切tanδε、磁导率μr及磁损耗角正切tanδμ对反射率的影响,并通过仿真计算与实际测试结果对比,确定了仿真模型中玻璃纤维增强树脂基复合材料的等效电磁参数。研究了Al薄膜与玻璃纤维增强树脂基复合材料结构中Al薄膜厚度对反射率的影响,仿真计算与测试结果表明,Al薄膜厚度对复合材料的反射率影响较大,Al薄膜与玻璃纤维增强树脂基复合材料结构中存在一个最佳电阻值,使该结构谐振反射最小。根据传输线理论,利用MATLAB对谐振最强时对应电阻的大小进行了求解。通过计算不同结构的Al薄膜与玻璃纤维增强树脂基复合材料,得到了仿真模型中Al薄膜与磁控溅射制备Al薄膜的厚度关系。确定了仿真模型中各材料的等效电磁参数,仿真计算结果与测试结果吻合较好。

关键词 Al薄膜玻璃纤维增强树脂基复合材料等效电磁参数仿真谐振电阻    
Abstract

Metallic thin films have many properties that bulk metals do not possess, such as high impedance. Recently, increasing attention has been paid to high impedance surface in the design of antennas and absorbers. Metallic thin films used in composite materials can realize the perfect matching of electromagnetic wave in different materials. The use of metallic thin films in electromagnetic functional materials results in significant increase of the absorbing intensity and operating bandwidth. But it usually needs to pay a huge amount of manpower, material resources and a longer period of time to design excellent electromagnetic functional materials with metallic films. So it is greatly significant to understand clearly the electromagnetic influence of metallic film for designing excellent performance materials and saving costs by simulation software. Al film is a typical non-magnetic metal film. In this work, the electromagnetic reflectivity of Al films and glass fiber reinforced resin matrix composite had been studied. High frequency electromagnetic field calculation software FEKO was employed to calculate the reflection coefficient of the composites. The effect of composites' real part of permittivity εr, dielectric loss tangent tanδε, permeability μr and magnetic loss tangent tanδμ on microwave reflectivity had been discussed. The equivalent electromagnetic parameters of glass fiber reinforced resin matrix composite had been obtained through a comparison between simulation and experimental results. Due to resonance phenomena of the embedded Al film in the glass fiber reinforced resin matrix composite with certain thickness, there is an optimum resistance value of Al film that makes the composite structure have minimum reflection. Through the calculation of Al film and glass fiber reinforced resin matrix composite with different structure, the thickness relationship between Al films in calculation and Al films prepared by magnetron sputtering had been obtained. According to the theory of transmission line, the resistance of resonance is analyzed by MATLAB. This method is also applicable to the resistance solution of the homogeneous metal films at any position in the composite or frequency selective surfaces. The equivalent electromagnetic parameters of Al film and glass fiber reinforced resin matrix composite in simulation had been ascertained, and the simulation results agree well with the experimental results.

Key wordsAl film    glass fiber reinforced resin matrix composite    effective electromagnetic parameter    simulation    resonance    resistance
收稿日期: 2017-05-09     
ZTFLH:  O484.5  
作者简介:

作者简介 陈育秋,女,1986年生,博士生

图1  频率选择表面单元
图2  2种复合结构仿真模型
Fiber εr tanδε
D glass fiber 4.0 0.002~0.003
Quartz fiber 3.8 0.0001~0.0002
Polyester resin 2.7~3.2 0.005~0.02
Epoxy resin 3.0~3.4 0.01~0.03
Glass fiber/epoxy 4.2~4.7 0.007~0.014
Glass fiber/polyimide 4.0~4.4 0.006~0.012
表1  纤维、树脂及其构成的复合材料体系的介电性能[13]
图3  复合材料的介电常数实部εr及电损耗角正切tanδε
图4  复合材料截面SEM像
图5  εr对复合材料反射率影响
图6  tanδε对复合材料反射率的影响
图7  磁导率实部μr对复合材料反射率的影响
图8  磁损耗角正切tanδμ对复合材料反射率的影响
图9  复合材料反射率计算与测试对比曲线
图10  Al薄膜与8 mm复合材料的反射率计算与测试对比曲线
图11  不同厚度Al薄膜在8 mm复合材料表面和中间位置的反射率仿真计算曲线
图12  金属膜与介质复合结构示意图及传输线等效电路模型
图13  8 mm复合材料与Al薄膜复合结构谐振时对应的Al膜电阻曲线
[1] Zhou H, Qu S B, Peng W D, et al.A novel frequency selective surface loaded with resistance films absobers[J]. Acta Phys. Sin., 2012, 61: 104201(周航, 屈绍波, 彭卫东等. 一种加载电阻膜吸波材料的新型频率选择表面[J]. 物理学报, 2012, 61: 104201)
[2] Cheng Y Z, Nie Y, Gong R Z, et al.Design of an ultrathin and wideband metamaterial absorber based on resistance film and fractal frequency selective surface[J]. Acta Phys. Sin., 2013, 62: 044103(程用志, 聂彦, 龚荣洲等. 基于电阻膜与分形频率选择表面的超薄宽频带超材料吸波体的设计[J]. 物理学报, 2013, 62: 044103)
[3] Pang Y Q, Cheng H F, Zhou Y J, et al.Ultrathin and broadband high impedance surface absorbers based on metamaterial substrates[J]. Opt. Express, 2012, 20: 12515
[4] Zhao D L, Song Y L, Zhu Y P.New microwave absorber based on resonant high-impedance surface[J]. J. Nanjing Univ. Sci. Technol.(Nat. Sci.), 2010, 34: 136(赵德林, 宋耀良, 朱艳萍. 一种新的基于谐振型高阻抗表面的微波吸波屏[J]. 南京理工大学学报(自然科学版), 2010, 34: 136)
[5] Costa F, Monorchio A.Electromagnetic absorbers based on high-impedance surfaces: From ultra-narrowband to ultra-wideband absorption[J]. Adv. Electromagnet., 2012, 1(3): 7
[6] Teng Z P.The study of electromagnetic band-gap structure used in antenna design [D]. Nanchang: East China Jiaotong University, 2016(腾兆朋. 电磁带隙结构研究与在天线设计中的应用 [D]. 南昌: 华东交通大学, 2016)
[7] Costa F, Genovesi S, Monorchio A.On the bandwidth of high-impedance frequency selective surfaces[J]. IEEE Antennas Wirel. Propag. Lett., 2010, 8: 1341
[8] Sun L K, Cheng H F, Zhou Y J, et al.Broadband metamaterial absorber based on coupling resistive frequency selective surface[J]. Opt. Express, 2012, 20: 4675
[9] Sun L K, Cheng H F, Zhou Y J, et al.Low-frequency and broad band metamaterial absorber: Design, fabrication, and characterization[J]. Appl. Phys., 2011, 105A: 49
[10] Chen J F, Hu Z Y, Wang G D, et al.High-impedance surface-based broadband absorbers with interference theory[J]. IEEE Trans. Antennas Propag., 2015, 63: 4367
[11] Gu C, Qu S B, Pei Z B, et al.Design of a wide-band metamaterial absorber based on resistance films[J]. Acta Phys. Sin., 2011, 60(8): 087802(顾超, 屈绍波, 裴志斌等. 基于电阻膜的宽频带超材料吸波体的设计[J]. 物理学报, 2011, 60(8): 087802)
[12] Yan Z W, Su D L, Yuan X M.FEKO 5.4 Electromagnetic Field Analysis Techniques and Examples [M]. Beijing: China Water Power Press, 2009: 1(阎照文, 苏东林, 袁晓梅. FEKO 5.4电磁场分析技术与实例详解 [M]. 北京: 中国水利水电出版社, 2009: 1)
[13] Xing L Y.Study on the microwave-absorbing composite with circuit analogue [D]. Beijing: Beihang University, 2003(邢丽英. 含电路模拟结构吸波复合材料研究 [D]. 北京: 北京航空航天大学, 2003)
[14] Zhou Y J, Chen Z H, Cheng H F, et al.Calculating microwave effective permittivity of particle-filling composite materials by FDTD method[J]. J. Mater. Sci. Eng., 2006, 24: 830(周永江, 陈朝辉, 程海峰等. 用FDTD方法研究颗粒型复合材料微波等效介电常数[J]. 材料科学与工程学报, 2006, 24: 830)
[15] Wang D, Deng J L, Jiao Y J.The evaluation for the theory calculation methods of composite medium absorbing material equivalent electromagnetic parameters[J]. Mater. Prot., 2014, 47(suppl.1): 46(王丹, 邓京兰, 焦亚军. 复合介质吸波材料等效电磁参数理论计算方法的评价[J]. 材料保护, 2014, 47(增刊1): 46)
[16] Wang T G, Gong J, Du H, et al.Study on electromagnetic wave transmission performances of ultra-thin metallic films[J]. Acta Metall. Sin., 2005, 41: 814(王铁钢, 宫骏, 杜昊等. 超薄金属膜电磁波传输性能的研究[J]. 金属学报, 2005, 41: 814)
[17] Liu J G, Wang T G, Du H, et al.Permittivity of nano aluminum films in microwave band[J]. Met. Funct. Mater., 2006, 13(1): 24(刘健钢, 王铁钢, 杜昊等. 纳米Al膜的微波介电特性研究[J]. 金属功能材料, 2006, 13(1): 24)
[18] Liu Z M, Du H, Shi N L, et al.Influence of conductivity size effect on the microwave absorption properties of aluminium films[J]. Acta Metall. Sin., 2008, 44: 1099(刘志敏, 杜昊, 石南林等. 铝膜电导率尺寸效应对其微波性能的影响[J]. 金属学报, 2008, 44: 1099)
[19] Du H, Xiao J Q, Tan M H, et al.Initial analysis of effective medium theory to dielectric function change of nanometal film[J]. Acta Metall. Sin., 2000, 36: 1165(杜昊, 肖金泉, 谭明晖等. 利用有效媒质理论对纳米金属薄膜介电函数的初步分析[J]. 金属学报, 2000, 36: 1165)
[20] Du H, Bai X D, Xiao J Q, et al.Size effect of the absorptance of the ultra-thin titanium films[J]. Chin. J. Mater. Res., 2001, 15: 215(杜昊, 白雪冬, 肖金泉等. 超薄Ti膜吸收率的尺寸效应[J]. 材料研究学报, 2001, 15: 215)
[21] Bai X D, Huang R F, Wen L S.The size effect of the visible absorptance of the ultrathin aluminum film[J]. Acta Metall. Sin., 1998, 34: 1005(白雪冬, 黄荣芳, 闻立时. 超薄Al膜可见光吸收率的尺寸效应[J]. 金属学报, 1998, 34: 1005)
[22] Bai X D, Huang R F, Wen L S.The size effect of the visible optical characteristics for ultrathin Al films[J]. Vac. Sci. Technol.(China), 1999, 19(2): 108(白雪冬, 黄荣芳, 闻立时. 超薄Al膜可见光光学特性与其特征尺寸的关系[J]. 真空科学与技术, 1999, 19(2): 108)
[23] Tang W, Deng L J, Xu K W, et al., Relationship between resistivity of metallic film and its surface roughness, residual stress[J]. Rare Met. Mater. Eng., 2008, 37: 617(唐武, 邓龙江, 徐可为等. 金属薄膜电阻率与表面粗糙度、残余应力的关系[J]. 稀有金属材料与工程, 2008, 37: 617)
[24] Zhang H B.Design of broadband periodic absorbing structure based on electromagnetic resonances [D]. Chengdu: University of Electronic Science and Technology of China, 2013(张辉彬. 基于电磁谐振的宽频周期吸波结构设计 [D]. 成都: 电子科技大学, 2013)
[25] Xu Y Q, Zhang H B, Zhou P H, et al.Design of a low-frequency broadband circuit analog absorbers based on wire media[J]. Acta Phys. Sin., 2013, 62: 058103(徐阳秋, 张辉彬, 周佩珩等. 基于金属线阵列嵌入的低频宽带电路模拟吸波体设计[J]. 物理学报, 2013, 62: 058103)
[26] Zhang H B, Zhou P H, Lu H P, et al.Resistance selection of high impedance surface absorbers for perfect and broadband absorption[J]. IEEE Trans. Antennas Propag., 2013, 61: 976
[1] 曾小勤, 王杰, 应韬, 丁文江. 镁及其合金导热研究进展[J]. 金属学报, 2022, 58(4): 400-411.
[2] 赵宇宏, 景舰辉, 陈利文, 徐芳泓, 侯华. 装甲防护陶瓷-金属叠层复合材料界面研究进展[J]. 金属学报, 2021, 57(9): 1107-1125.
[3] 孙小钧, 何杰, 陈斌, 赵九洲, 江鸿翔, 张丽丽, 郝红日. Fe含量对Zr60Cu40-xFex相分离非晶合金组织结构、电阻性能和纳米压痕行为的影响[J]. 金属学报, 2021, 57(5): 675-683.
[4] 黄一川, 王清, 张爽, 董闯, 吴爱民, 林国强. 用于燃料电池双极板的不锈钢成分优化[J]. 金属学报, 2021, 57(5): 651-664.
[5] 陈永君, 白妍, 董闯, 解志文, 燕峰, 吴迪. 基于有限元分析的准晶磨料强化不锈钢表面钝化行为[J]. 金属学报, 2020, 56(6): 909-918.
[6] 王霞, 王维, 杨光, 王超, 任宇航. 激光沉积薄壁结构热力演化的尺寸效应[J]. 金属学报, 2020, 56(5): 745-752.
[7] 金学军,龚煜,韩先洪,杜浩,丁伟,朱彬,张宜生,冯毅,马鸣图,梁宾,赵岩,李勇,郑菁桦,石朱生. 先进热成形汽车钢制造与使用的研究现状与展望[J]. 金属学报, 2020, 56(4): 411-428.
[8] 王文琴, 王昭漫, 李玉龙, 王德, 李淼, 陈情. 电阻缝焊法制备铁基WC/金属双层涂层及其摩擦行为[J]. 金属学报, 2019, 55(4): 537-546.
[9] 邵毅, 李彦默, 刘晨曦, 严泽生, 刘永长. 低碳铁素体不锈钢高频直缝电阻焊管退火工艺优化[J]. 金属学报, 2019, 55(11): 1367-1378.
[10] 陈树君, 苑城玮, 蒋凡, 闫志鸿, 章朋田. 电阻加热金属丝材熔滴过渡的产热机制与熔化行为研究[J]. 金属学报, 2018, 54(9): 1297-1310.
[11] 张文颖, 李俊, 周波. 金属连接体涂层材料MnCo2O4尖晶石的氧化动力学行为和电性能*[J]. 金属学报, 2016, 52(3): 355-360.
[12] 左小伟,郭睿,安佰灵,张林,王恩刚. 横向磁场下定向凝固Cu-6%Ag合金的组织、硬度和电阻率*[J]. 金属学报, 2016, 52(2): 143-150.
[13] 李晓雁. 纳米晶Al薄膜Bauschinger效应的分子动力学模拟*[J]. 金属学报, 2014, 50(2): 219-225.
[14] 杨倩倩, 刘源, 李言祥. 定向凝固藕状多孔Al生长过程的模拟仿真[J]. 金属学报, 2014, 50(11): 1403-1412.
[15] 张建锋, 刘双, 刘轩, 宛建军, 徐庆亮, 乐启炽, 崔建忠. 超声处理对液态Pb-20%Sn合金电阻的影响[J]. 金属学报, 2014, 50(10): 1231-1236.