Please wait a minute...
金属学报  2017, Vol. 53 Issue (11): 1418-1426    DOI: 10.11900/0412.1961.2017.00163
  研究论文 本期目录 | 过刊浏览 |
两相区位错增殖对Mn元素配分及低碳钢贝氏体组织的影响
陈连生1, 李跃1, 张明山1, 田亚强1(), 郑小平1, 徐勇1,2, 张士宏2
1 华北理工大学教育部现代冶金技术重点实验室 唐山 063210
2 中国科学院金属研究所 沈阳 110016
Effect of Intercritical Dislocation Multiplication to Mn Partitioning and Microstructure Evolution of Bainite in Low Carbon Steel
Liansheng CHEN1, Yue LI1, Mingshan ZHANG1, Yaqiang TIAN1(), Xiaoping ZHENG1, Yong XU1,2, Shihong ZHANG2
1 Key Laboratory of the Ministry of Education for Modern Metallurgy Technology, North China University of Science and Technology, Tangshan 063210, China
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

陈连生, 李跃, 张明山, 田亚强, 郑小平, 徐勇, 张士宏. 两相区位错增殖对Mn元素配分及低碳钢贝氏体组织的影响[J]. 金属学报, 2017, 53(11): 1418-1426.
Liansheng CHEN, Yue LI, Mingshan ZHANG, Yaqiang TIAN, Xiaoping ZHENG, Yong XU, Shihong ZHANG. Effect of Intercritical Dislocation Multiplication to Mn Partitioning and Microstructure Evolution of Bainite in Low Carbon Steel[J]. Acta Metall Sin, 2017, 53(11): 1418-1426.

全文: PDF(7522 KB)   HTML
摘要: 

采用两相区变形-保温-淬火(DIQ)热处理工艺,研究低碳钢两相区变形位错增殖作用下Mn元素配分行为及其对贝氏体组织的影响规律。通过OM、SEM、TEM、EPMA和XRD等手段对组织成分、位错密度、合金元素分布等进行表征。结果表明,变形后的铁素体晶粒和马氏体板条细化、块状马氏体数量减少;位错密度由0.36×1014 m-2增加至1.20×1014 m-2,位错滑移的相互运动提高了空位浓度及间隙溶质原子数量,加速了C、Mn元素在α相与γ相中的扩散速率,促进了Mn在两相区的配分效果,C、Mn元素富集量及富集区域增多。采用两相区变形-保温-奥氏体化-淬火-贝氏体区保温-淬火(DI&Q&PB)热处理工艺,残余奥氏体的体积分数由11.5%提高到13.9%,残余奥氏体中的C含量由1.14%提高到1.28%。

关键词 两相区变形位错增殖空位配分贝氏体    
Abstract

The volume fraction and stabilization of retained austenite at room temperature were determined by the degree of stable element partitioning of austenite. The element diffusion behaviors usually had a close relationship with crystal defects, and dislocation multiplication caused by high temperature deformation might also increase the vacancy concentration, which contributed to the diffusion of substitutional atoms and interstitial atoms. By adopting a new treatment process of intercritical deformation-hold-quenching (DIQ), the effect of Mn partitioning and the structure evolution of bainite under the deformation in intercritical area were studied. The microstructure, dislocation density and distribution of alloy elements, especially the volume fraction of retained austenite, were characterized by means of OM, SEM, TEM, EPMA and XRD. The results indicated that the grains of ferrite and the lathes of martensite were refined, the number of the block martensite was decreased, and dislocation density was increased from 0.36×1014 m-2 to 1.20×1014 m-2 after deformation. The mutual movement of dislocation slip increased vacancy concentration and the number of interstitial solute atoms, accelerated the diffusive rate of C atoms and Mn atoms from α phase to γ phase, and promoted the partitioning effect of Mn element in the critical region. Eventually, the contents and areas of C and Mn enrichment were increased. By adopting the process of intercritical deformation-hold-austenitizing-quenching-partitioning in bainitic region-quenching (DI&Q&PB), the volume fraction of retained austenite was increased from 11.5% to 13.9%, and the carbon content in retained austenite was increased from 1.14% to 1.28%.

Key wordsintercritical deformation    dislocation multiplication    vacancy    partitioning    bainite
收稿日期: 2017-05-02     
ZTFLH:  TG142.4  
基金资助:国家自然科学基金项目No.51574107,河北省自然科学基金项目No.E2016209048和E2017209048,唐山市科技创新团队项目No.15130202C及河北省研究生创新项目No.2017S01
作者简介:

作者简介 陈连生,男,1968年生,教授,博士

图1  热模拟压缩变形工艺流程图
图2  热模拟试样的初始组织
图3  不同热处理工艺下热模拟试样微观组织的SEM像
图4  不同热处理工艺下热模拟试样的TEM像
Process Dislocation density /1014 m-2
Field 1 Field 2 Field 3 Field 4 Field 5 Average
IQ 0.35 0.30 0.38 0.38 0.41 0.36
DIQ 1.38 1.29 1.04 1.26 1.03 1.20
表1  不同热处理工艺下热模拟试样的位错密度测量结果
图5  不同热处理工艺下C、Mn元素分布图
图6  C和Mn原子扩散机制
图7  不同热处理工艺下热模拟试样的微观组织
图8  不同热处理工艺下热模拟试样的XRD谱
[1] Lis J, Lis A, Kolan C.Manganese partitioning in low carbon manganese steel during annealing[J]. Mater. Charact., 2008, 59: 1021
[2] Khaira H K, Jena A K, Chaturvedi M C.Effects of heat treatment cycle on equilibrium between ferrite and austenite during intercritical annealing[J]. Mater. Sci. Eng., 1993, A161: 267
[3] Coates D E.Diffusion controlled precipitate growth in ternary systems: II[J]. Matall. Trans., 1973, 4: 1077
[4] Coates D E.Diffusion-controlled precipitate growth in ternary systems: I[J]. Matall. Trans., 1972, 3: 1203
[5] Hillert M.Nature of local equilibrium at the interface in the growth of ferrite from alloyed austenite[J]. Scr. Mater., 2002, 46: 447
[6] Hoel R H.Metallography and partitioning of alloying elements in dual-phase steels[J]. Metallography, 1984, 17: 273
[7] Tian Y Q, Zhang H J, Chen L S, et al.Effect of alloy elements partitioning behavior on retained austenite and mechanical property in low carbon high strength steel[J]. Acta Metall. Sin., 2014, 50: 531(田亚强, 张宏军, 陈连生等. 低碳高强钢合金元素配分行为对残余奥氏体和力学性能的影响[J]. 金属学报, 2014, 50: 531)
[8] Yabuuchi K, Kasada R, Kimura A.Effect of Mn addition on one-dimensional migration of dislocation loops in body-centered cubic Fe[J]. Acta Mater., 2013, 61: 6517
[9] Sampath S, Rementeria R, Huang X, et al.The role of silicon, vacancies, and strain in carbon distribution in low temperature bainite[J]. J. Alloys Compd., 2016, 673: 289
[10] Hu B F, Kinoshita H, Takahashi H.Irradiation damage and radiation induced segregation at grain boundaries of the welding heat affected zone in Fe-Cr-Mn (W, V) alloy[J]. Acta Metall. Sin., 1999, 10: 1090(胡本芙, 木下博嗣, 高桥平七郎. Fe-Cr-Mn(W, V)合金焊接热影响区的辐照损伤及诱发的晶界元素偏析[J]. 金属学报, 1999, 10: 1090)
[11] Fischer F D, Svoboda J.Substitutional diffusion in multicomponent solids with non-ideal sources and sinks for vacancies[J]. Acta Mater., 2010, 58: 2698.
[12] Chen L S, Zhang J Y, Tian Y Q, et al.Effect of Mn pre-partitioning on C partitioning and retained austenite of Q&P steels[J]. Acta Metall. Sin., 2015, 51: 527(陈连生, 张健杨, 田亚强等. 预先Mn配分处理对Q&P钢中C配分及残余奥氏体的影响[J]. 金属学报, 2015, 51: 527)
[13] Liu H P, Sun H E, Liu B, et al.An ultrahigh strength steel with ultrafine-grained microstructure produced through intercritical deformation and partitioning process[J]. Mater. Des., 2015, 83: 760
[14] Hu Z P, Xu Y B, Tan X D.Intercritical austenite stabilization of a Mn-Al TRIP steel[J]. J. Northeast. Univ.(Nat. Sci.), 2016, 37: 179(胡智评, 许云波, 谭小东. 一种Mn-Al系TRIP钢的临界区奥氏体稳定化研究[J]. 东北大学学报(自然科学版), 2016, 37: 179)
[15] Zhu S S, Wang Z Z, Mao X Y, et al.A review about strengthening-toughening technologies for ferrite-pearlite non-quenched and tempered steels[J]. Mater. Rev., 2016, 30(9): 122(朱帅帅, 王章忠, 毛向阳等. 铁素体-珠光体型非调质钢强韧化技术研究进展[J]. 材料导报, 2016, 30(9): 122)
[16] Browning N D, Chisholm M F, Pennycook S J.Atomic-resolution chemical analysis using a scanning transmission electron microscope[J]. Nature, 1993, 366: 143
[17] Williams D B, Carter C B.Transmission Electron Microscopy: A Textbook for Materials Science [M]. New York: Plenum Press, 1996: 1
[18] Kostka A, Tak K G, Hellmig R J, et al.On the contribution of carbides and micrograin boundaries to the creep strength of tempered martensite ferritic steels[J]. Acta Mater., 2007, 55: 539
[19] Aghajani A.Evolution of microstructure during long-term creep of a tempered martensite ferritic steel [D]. Bochum: Ruhr-University Bochum, 2009
[20] Pe?i?ka J, Ku?el R, Dronhofer A, et al.The evolution of dislocation density during heat treatment and creep of tempered martensite ferritic steels[J]. Acta Mater., 2003, 51: 4847
[21] Zhang S H, He X L, Chu Y Y, et al.Behavior of vacancy influence during diffusion in metals[J]. Acta Metall. Sin., 1992, 28(5): A187(章三红, 贺信莱, 褚幼义等. 扩散过程中空位的作用及其地位[J]. 金属学报, 1992, 28(5): A187)
[22] Xu S, Guo Y F.Generation and evolution of vacancy-type defects in nano-Cu films during plastic deformation by means molecular dynamics[J]. Acta Phys. Sin., 2013, 62: 196201(徐爽, 郭雅芳. 纳米铜薄膜塑性变形中空位型缺陷形核与演化的分子动力学研究[J]. 物理学报, 2013, 62: 196201)
[23] Chen L S, Zhang J Y, Tian Y Q, et al.Study on morphology feature and mechanism in transformation process of austenite during intercritical annealing of low-carbon steel[J]. Hot Working Technol., 2015, 44(16): 223(陈连生, 张健杨, 田亚强等. 低碳钢双相区奥氏体组织特征及形成机理研究[J]. 热加工工艺, 2015, 44(16): 223)
[24] Luo H W, Shi J, Wang C, et al.Experimental and numerical analysis on formation of stable austenite during the intercritical annealing of 5Mn steel[J]. Acta Mater., 2011, 59: 4002
[25] Sun S J, Pugh M.Manganese partitioning in dual-phase steel during annealing[J]. Mater. Sci. Eng., 2000, A276: 167
[26] Hu G X, Cai X, Rong Y H.Fundamentals of Materials Science [M]. Shanghai: Shanghai Jiao Tong University Press, 2000: 1(胡赓祥, 蔡珣, 戎咏华. 材料科学基础 [M]. 上海: 上海交通大学出版社, 2000: 1)
[27] Speer J G, Matlock D K.Recent developments in low-carbon sheet steels[J]. JOM, 2002, 54(7): 19
[28] Li Y J, Li X L, Yuan G, et al.Microstructure and partitioning behavior characteristics in low carbon steels treated by hot-rolling direct quenching and dynamical partitioning processes[J]. Mater. Charact., 2016, 121: 157
[1] 赵亚峰, 刘苏杰, 陈云, 马会, 马广财, 郭翼. 铁素体-贝氏体双相钢韧性断裂过程中的夹杂物临界尺寸及孔洞生长[J]. 金属学报, 2023, 59(5): 611-622.
[2] 程远遥, 赵刚, 许德明, 毛新平, 李光强. 奥氏体化温度对Si-Mn钢热轧板淬火-配分处理后显微组织和力学性能的影响[J]. 金属学报, 2023, 59(3): 413-423.
[3] 廖京京, 张伟, 张君松, 吴军, 杨忠波, 彭倩, 邱绍宇. Zr-Sn-Nb-Fe-V合金在过热蒸汽中的周期性钝化-转折行为[J]. 金属学报, 2023, 59(2): 289-296.
[4] 孙毅, 郑沁园, 胡宝佳, 王平, 郑成武, 李殿中. 3Mn-0.2C中锰钢形变诱导铁素体动态相变机理[J]. 金属学报, 2022, 58(5): 649-659.
[5] 李伟, 贾兴祺, 金学军. 高强韧QPT工艺的先进钢组织调控和强韧化研究进展[J]. 金属学报, 2022, 58(4): 444-456.
[6] 朱彬, 杨兰, 刘勇, 张宜生. 基于纳米压痕逆算法的热冲压马氏体/贝氏体双相组织的微观力学性能[J]. 金属学报, 2022, 58(2): 155-164.
[7] 朱东明, 何江里, 史根豪, 王青峰. 热输入对Q500qE钢模拟CGHAZ微观组织和冲击韧性的影响[J]. 金属学报, 2022, 58(12): 1581-1588.
[8] 蒋中华, 杜军毅, 王培, 郑建能, 李殿中, 李依依. M-A岛高温回火转变产物对核电SA508-3钢冲击韧性影响机制[J]. 金属学报, 2021, 57(7): 891-902.
[9] 刘曼, 胡海江, 田俊羽, 徐光. 变形对超高强贝氏体钢组织和力学性能的影响[J]. 金属学报, 2021, 57(6): 749-756.
[10] 彭云,宋亮,赵琳,马成勇,赵海燕,田志凌. 先进钢铁材料焊接性研究进展[J]. 金属学报, 2020, 56(4): 601-618.
[11] 王占花, 惠卫军, 谢志奇, 张永健, 赵晓丽. 回火对钒钛微合金化Mn-Cr系贝氏体型非调质钢组织和性能的影响[J]. 金属学报, 2020, 56(11): 1441-1451.
[12] 田亚强,田耕,郑小平,陈连生,徐勇,张士宏. 淬火配分贝氏体钢不同位置残余奥氏体C、Mn元素表征及其稳定性[J]. 金属学报, 2019, 55(3): 332-340.
[13] 万响亮, 胡锋, 成林, 黄刚, 张国宏, 吴开明. 两步贝氏体转变对中碳微纳结构钢韧性的影响[J]. 金属学报, 2019, 55(12): 1503-1511.
[14] 王帅鹏, 罗文华, 李赣, 李海波, 张广丰. La含量对Ce-La合金氢化动力学的影响[J]. 金属学报, 2018, 54(8): 1187-1192.
[15] 徐士新, 余伟, 李舒笳, 王坤, 孙齐松. 预变形温度对纳米贝氏体相变动力学及组织的影响[J]. 金属学报, 2018, 54(8): 1113-1121.