Please wait a minute...
金属学报  2018, Vol. 54 Issue (4): 527-536    DOI: 10.11900/0412.1961.2017.00149
  本期目录 | 过刊浏览 |
深海用X70管线钢焊接接头腐蚀行为研究
马歌, 左秀荣(), 洪良, 姬颖伦, 董俊媛, 王慧慧
郑州大学材料物理教育部重点实验室 郑州 450052
Investigation of Corrosion Behavior of Welded Joint of X70 Pipeline Steel for Deep Sea
Ge MA, Xiurong ZUO(), Liang HONG, Yinglun JI, Junyuan DONG, Huihui WANG
Key Laboratory of Material Physics, Ministry of Education, Zhengzhou University, Zhengzhou 450052, China
引用本文:

马歌, 左秀荣, 洪良, 姬颖伦, 董俊媛, 王慧慧. 深海用X70管线钢焊接接头腐蚀行为研究[J]. 金属学报, 2018, 54(4): 527-536.
Ge MA, Xiurong ZUO, Liang HONG, Yinglun JI, Junyuan DONG, Huihui WANG. Investigation of Corrosion Behavior of Welded Joint of X70 Pipeline Steel for Deep Sea[J]. Acta Metall Sin, 2018, 54(4): 527-536.

全文: PDF(6540 KB)   HTML
摘要: 

通过浸泡实验、失重实验、电化学实验对深海用厚规格X70管线钢焊接接头各区域耐蚀性进行研究,利用XRD分析其钝化膜的组成,利用SEM观察其显微组织。结果表明,焊缝的耐蚀性最优,热影响区耐蚀性次之,近热基体耐蚀性最差,且对于相同区域,内焊的耐蚀性优于外焊。内层腐蚀产物Fe3O4形成致密的钝化膜能有效减缓反应的进行,外层疏松的腐蚀产物Fe2O3、FeOOH、Fe(OH)3对基体无保护作用。焊缝处微观组织多为晶内形核铁素体,且马氏体-奥氏体(M-A)组元细小且均匀分布,耐蚀性最好;热影响区组织梯度变化最大,M-A组元粗大,耐蚀性次于焊缝;近热基体由铁素体和贝氏体组成,贝氏体呈岛状分布,耐蚀性最差。内焊部分受外焊热循环的影响,微观组织更加细化,M-A组元体积分数较多,耐蚀性好于外焊。

关键词 X70管线钢点蚀夹杂物微观组织M-A组元    
Abstract

X70 pipeline steel with thick specifications (40.5 mm) for 3500 m deep sea reached the international advanced level in the wall thickness and service depth. Due to the high heat input during the welding process, the corrosion resistance of inside welding and outside welding would vary depending on the microstructure differences. The corrosion resistance of the welded joints of X70 pipeline for deep sea was studied by the immersion test, the weight loss test, the electrochemical test in this work. The components of the passive film were analyzed by XRD and the microstructure was observed by SEM. The results show that the corrosion resistance of the weld metal is the best. The corrosion resistance of the heat affected zone follows. The corrosion resistance of the base metal is the worst. And for the same area, the corrosion resistance of the inside welding is better than that of the outside welding. The formation of dense Fe3O4 passivation film can effectively slow down the progress of the reaction, and the corrosion products of Fe2O3, FeOOH and Fe(OH)3 which are loose in the outer layer, have no protective effect on the matrix. The microstructure of the weld metal with the best corrosion resistance is mostly the intragranular nucleation ferrite and martensite-austenite (M-A) constituent is fine and uniform. The microstructure gradient of the heat affected zone is the largest, the M-A constituent is coarse and the corrosion resistance is inferior to the weld metal. The base metal consists of ferrite and bainite, the bainite is island-like distribution and the corrosion resistance is the worst. Microstructure of the inside welding is more refined, owing to the influence of outside welding thermal cycle, and the volume fraction of M-A constituent in inside welding is higher than that of the outside welding, so the corrosion resistance is better than that of the outside welding.

Key wordsX70 pipeline    pitting    inclusion    microstructure    M-A constituent
收稿日期: 2017-04-25     
ZTFLH:  TG172.6  
作者简介:

作者简介 马 歌,女,1991年生,硕士

图1  X70管线钢示意图及焊接接头宏观形貌图
Position C Mn P S Si Ni+Cr+Cu+Mo Nb+Ti Fe
Base metal 0.044 1.56 0.009 0.009 0.25 0.475 0.069 Bal.
Weld metal 0.074 1.54 0.011 0.002 0.28 0.691 0.043 Bal.
表1  X70管线钢母材和焊缝的化学成分
图2  焊接接头在3.5%NaCl溶液中浸泡2 h后的宏观形貌
图3  焊接接头在3.5%NaCl溶液中浸泡2 h后的的OM像
图4  焊接接头在3.5%NaCl溶液中浸泡2 h后点蚀坑统计结果
图5  焊接接头在3.5%NaCl溶液中失重实验结果
图6  焊接接头在3.5%NaCl溶液中浸泡96 h后钝化膜的XRD谱
图7  焊接接头各区域的开路电压
图8  焊接接头各区域动电位极化曲线
Position Ecorr / mV icorr / (mAcm-2)
BMout -691 1.340×10-4
HAZout -689 2.608×10-4
WMout -680 6.934×10-5
BMin -648 6.644×10-4
HAZin -609 6.996×10-4
WMin -583 4.919×10-4
表2  焊接接头各区域自腐蚀电位与自腐蚀电流密度
图9  焊接接头在3.5%NaCl溶液中浸泡96 h后的夹杂物形态及EDS分析
图10  焊接接头各区域的SEM像
图11  外焊各个区域M-A组元形貌的OM像
图12  焊接接头单位面积内M-A组元尺寸分布
[1] Li S S, Liu M, Zuo X R, et al.Prospect of development and application of pipeline steel for deep water[J]. Hot Work. Technol., 2013, 42(18): 23(李树森, 刘敏, 左秀荣等. 深海管线用钢开发及应用前景[J]. 热加工工艺, 2013, 42(18): 23)
[2] Rihan R O.Galvanic corrosion of electric resistance welded X52 steel in CO2-containing solution[J]. Anti-Corros. Method. Mater., 2014, 61: 431
[3] Zhao W, Zou Y, Matsuda K, et al.Corrosion behavior of reheated CGHAZ of X80 pipeline steel in H2S-containing environments[J]. Mater. Des., 2016, 99: 44
[4] Alizadeh M, Bordbar S.The influence of microstructure on the protective properties of the corrosion product layer generated on the welded API X70 steel in chloride solution[J]. Corros. Sci., 2013, 70: 170
[5] Huang M, Zhang M X, Wang Y, et al.Electrochemical behaviour of X80 pipeline steel with alumina coating[J]. Surf. Eng., 2015, 31: 295
[6] Kuang D, Cheng Y F.Study of cathodic protection shielding under coating disbondment on pipelines[J]. Corros. Sci., 2015, 99: 249
[7] Zhao P X, Zuo X R, Chen K, et al.Corrosion behavior of X80 pipeline steel with strain-based design[J]. Trans. Mater. Heat Treat., 2013, 34(suppl.2): 221(赵鹏翔, 左秀荣, 陈康等. X80大变形管线钢的腐蚀行为[J]. 材料热处理学报, 2013, 34(增刊 2): 221)
[8] Wang Y P, Zuo X R, Li J L.Corrosion resistance of the welded joint of submarine pipeline steel with ferrite plus bainite dual-phase microstructure[J]. Steel Res. Int., 2015, 86: 1260
[9] Cai G J, Li C S.Effects of Ce on inclusions and corrosion resistance of low-nickel austenite stainless steel[J]. Mater. Corros., 2015, 66: 1445
[10] Liu C, Guo Y B, Wang D G, et al.Effects of alternating stray current on corrosion behavior of X80 pipeline steel[J]. Corros. Prot., 2015, 36: 213(刘骋, 郭岩宝, 王德国等. 交流杂散电流对X80管线钢腐蚀行为的影响[J]. 腐蚀与防护, 2015, 36: 213)
[11] Xie Y, Li Y, Sun T, et al.Study on the protection of Q235 steel by in situ grown pure γ-FeOOH and α-FeOOH rust film[J]. Chin. Sci. Bull., 2008, 53: 2848(谢颖, 李瑛, 孙挺等. 原位生长的纯γ-FeOOH和α-FeOOH锈膜对Q235钢保护性能的研究[J]. 科学通报, 2008, 53: 2848)
[12] Zhu J Y, Xu L N, Feng Z C, et al.Galvanic corrosion of a welded joint in 3Cr low alloy pipeline steel[J]. Corros. Sci., 2016, 111: 391
[13] Shim J H, Cho Y W, Chung S H, et al.Nucleation of intragranular ferrite at Ti2O3 particle in low carbon steel[J]. Acta Mater., 1999, 47: 2751
[14] Grigorovich K V, Shibaeva T V, Arsenkin A M.Effect of a pipe-steel killing technology on the composition and number of nonmetallic inclusions[J]. Russ. Metall., 2011, 2011: 927
[15] Zheng S Q, Chen C F, Chen L Q.Influence of S contents on the hydrogen blistering and hydrogen induced cracking of A350LF2 steel[J]. Mater. Sci. Appl., 2011, 2: 917
[16] Cheng Y Y, Chen Z Z, Niu Y J, et al. Influence of inclusions on strength and toughness of X70 pipeline steel Girth Weld [J]. Appl. Mech. Mater., 2012, 182-183: 1554
[17] Lang F J, Huang X Q, Pang T, et al. Effect of inclusion on pitting corrosion of X80 pipeline steel [J]. Adv. Mater. Res., 2015, 1120-1121: 999
[18] Wang J Q, Atrens A, Cousens D R, et al.Measurement of grain boundary composition for X52 pipeline steel[J]. Acta Mater., 1998, 46: 5677
[19] Zhu Z X, Kuzmikova L, Li H J, et al.Effect of inter-critically reheating temperature on microstructure and properties of simulated inter-critically reheated coarse grained heat affected zone in X70 steel[J]. Mater. Sci. Eng., 2014, A605: 8
[20] Alé R M, Rebello J M A, Charlier J. A metallographic technique for detecting martensite-austenite constituents in the weld heat-affected zone of a micro-alloyed steel[J]. Mater. Charact., 1996, 37: 89
[21] Hrivnak I, Matsuda F, Li Z L, et al.Investigation of metallography and behavior of M-A constituent in Weld HAZ of HSLA steels (Materials, Metallurgy & Weldability)[J]. Trans. JWRI, 1992, 21: 241
[22] Pardal J M, da Silva M R, Bastos I N, et al. Influence of tempering treatment on microstructure and pitting corrosion resistance of a new super ferritic-martensitic-austenitic stainless steels with 17%Cr[J]. Corros. Eng., Sci. Technol., 2016, 51: 337
[23] Wang L W, Du C W, Liu Z Y, et al.Influence of carbon on stress corrosion cracking of high strength pipeline steel[J]. Corros. Sci., 2013, 76: 486
[24] Masumoto T.Studies on electrolytic extraction of carbides in iron and steels[J]. Tetsu Hagané, 1969, 55: 1347(増本健. 鉄鋼中の炭化物の電解抽出条件の検討[J]. 鉄と鋼, 1969, 55: 1347)
[25] Tsai W T, Chen J R.Galvanic corrosion between the constituent phases in duplex stainless steel[J]. Corros. Sci., 2007, 49: 3659
[1] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[2] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[3] 张奇亮, 王玉超, 李光达, 李先军, 黄一, 徐云泽. EH36钢在不同粒径沙砾冲击下的冲刷腐蚀耦合损伤行为[J]. 金属学报, 2023, 59(7): 893-904.
[4] 陈润农, 李昭东, 曹燕光, 张启富, 李晓刚. 9%Cr合金钢在含Cl环境中的初期腐蚀行为及局部腐蚀起源[J]. 金属学报, 2023, 59(7): 926-938.
[5] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[6] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[7] 李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
[8] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[9] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[10] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[11] 张月鑫, 王举金, 杨文, 张立峰. 冷却速率对管线钢中非金属夹杂物成分演变的影响[J]. 金属学报, 2023, 59(12): 1603-1612.
[12] 李会朝, 王彩妹, 张华, 张建军, 何鹏, 邵明皓, 朱晓腾, 傅一钦. 搅拌摩擦增材制造技术研究进展[J]. 金属学报, 2023, 59(1): 106-124.
[13] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[14] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[15] 高栋, 周宇, 于泽, 桑宝光. 液氮温度下纯Ti动态塑性变形中的孪晶变体选择[J]. 金属学报, 2022, 58(9): 1141-1149.