Please wait a minute...
金属学报  2018, Vol. 54 Issue (4): 557-565    DOI: 10.11900/0412.1961.2017.00147
  本期目录 | 过刊浏览 |
高应变速率下Mg-3Zn-1Y镁合金的各向异性及变形机制
李旭东, 毛萍莉(), 刘晏宇, 刘正, 王志, 王峰
沈阳工业大学材料科学与工程学院 沈阳 110870
Anisotropy and Deformation Mechanisms ofAs-Extruded Mg-3Zn-1Y Magnesium AlloyUnder High Strain Rates
Xudong LI, Pingli MAO(), Yanyu LIU, Zheng LIU, Zhi WANG, Feng WANG
School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
全文: PDF(5031 KB)   HTML
摘要: 

采用分离式Hopkinson压杆装置(SHPB)测试了挤压态Mg-3Zn-1Y稀土镁合金在应变速率分别为1000、1500和2200 s-1时的动态真应力-真应变曲线;采用OM和SEM等分析了其高速变形过程中的组织演变规律及断口形貌,从微观变形机制的角度探讨了具有强烈初始基面织构的挤压态镁合金产生各向异性的原因。分析结果表明:在高速变形条件下,由于加载方向不同,挤压态Mg-3Zn-1Y镁合金的压缩行为表现出较明显的各向异性。挤压态Mg-3Zn-1Y镁合金宏观上的各向异性是由于不同的微观变形机制所引起的。沿挤压方向压缩时,当应变较小时,变形机制主要为拉伸孪晶,当应变增加时,会有柱面滑移参与变形,当应变达到一定值时滑移成为其主要的变形方式。而沿挤压横向压缩时,随着应变速率增加,变形方式由压缩孪生为主变为基面滑移和二次锥面滑移协同变形。

关键词 镁合金各向异性高应变速率变形机制    
Abstract

As a very important design principle, the dynamic properties of materials attracted extensive attention in resent years and a bunch of works have been done concerning with the materials deformation behaviors under high strain rates. However, the dynamic behaviors of magnesium alloys are not through understood, especially the rare earth based magnesium alloys. In order to investigate the dynamic and anisotropic behavior under high strain rates deformation of as-extruded Mg-3Zn-1Y magnesium alloy, the split Hopkinson pressure bar (SHPB) apparatus was used to testing the true stress-true strain curves under the high strain rates of 1000, 1500 and 2200 s-1 of as-extruded Mg-3Zn-1Y magnesium alloy. The OM and SEM were used to analysis the micorstructure evolution and fracture surface morphology of the alloy. The true reason behind the anisotropic phenomenon was revealed based on the deformation mechanism of highly basal-textured magnesium alloy. The results demonstrate that the as-extruded Mg-3Zn-1Y magnesium alloy exhibits pronounced anisotropy during compression according to the loading direction. The anisotropy of the as-extruded Mg-3Zn-1Y magnesium alloy are arised from the variety of the deformation mechanisms. When the loading direction is along extrusion direction, the predominant deformation mode changes from extension twinning at a lower strain to prismatic slip at a higher strain. While compressed along extrusion radial direction (ERD), the predominant deformation mode changes from contraction twinning to a coordination of basal and second order pyramidal slip with the increasing of strain.

Key wordsmagnesium alloy    anisotropy    high strain rate    deformation mechanism
收稿日期: 2017-04-25      出版日期: 2017-10-12
ZTFLH:  TG146.2  
基金资助:沈阳市科技计划项目No.17-9-6-00
作者简介:

作者简介 李旭东,男,1992年生,硕士生

引用本文:

李旭东, 毛萍莉, 刘晏宇, 刘正, 王志, 王峰. 高应变速率下Mg-3Zn-1Y镁合金的各向异性及变形机制[J]. 金属学报, 2018, 54(4): 557-565.
Xudong LI, Pingli MAO, Yanyu LIU, Zheng LIU, Zhi WANG, Feng WANG. Anisotropy and Deformation Mechanisms ofAs-Extruded Mg-3Zn-1Y Magnesium AlloyUnder High Strain Rates. Acta Metall, 2018, 54(4): 557-565.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2017.00147      或      http://www.ams.org.cn/CN/Y2018/V54/I4/557

图1  试样切割方案示意图
图2  挤压态Mg-3Zn-1Y镁合金组织的OM像
图3  挤压态Mg-3Zn-1Y镁合金高速冲击压缩时的真应力-真应变曲线
图4  挤压态Mg-3Zn-1Y镁合金在ED和ERD加载方向下的屈服强度与应变速率的关系
图5  挤压态Mg-3Zn-1Y镁合金在ED和ERD加载方向下的真应力-真应变曲线
图6  挤压态Mg-3Zn-1Y镁合金在ED和ERD加载方向下的应变硬化率-真应变曲线
图7  挤压态Mg-3Zn-1Y镁合金在ED和ERD加载方向下的冲击吸收功-应变速率关系
图8  挤压态Mg-3Zn-1Y镁合金在不同应变速率下沿ED方向压缩后的变形组织的OM像
图9  挤压态Mg-3Zn-1Y镁合金在不同应变速率下沿ERD方向压缩后的变形组织的OM像
图10  挤压态Mg-3Zn-1Y镁合金的XRD谱
图11  挤压态Mg-3Zn-1Y镁合金高速冲击压缩加载方向与晶粒c轴的相对关系示意图
图12  不同加载方向下挤压态Mg-3Zn-1Y镁合金的压缩断口形貌
[1] Mordike B L, Ebert T.Magnesium: Properties-applications-potential[J]. Mater. Sci. Eng., 2001, A302: 37
[2] Aghion E, Bronfin B. Magnesium alloys development towards the 21st century [J]. Mater. Sci. Forum, 2000, 350-351: 19
doi: 10.4028/www.scientific.net/MSF.350-351.19
[3] Van Fleteren R.Magnesium for automotive applications[J]. Adv. Mater. Process., 1996, 149(5): 33
[4] Kleiner S, Uggowitzer P J.Mechanical anisotropy of extruded Mg-6% Al-1% Zn alloy[J]. Mater. Sci. Eng., 2004, A379: 258
[5] Bohlen J, Nürnberg M R, Senn J W, et al.The texture and anisotropy of magnesium-zinc-rare earth alloy sheets[J]. Acta Mater., 2007, 55: 2101
doi: 10.1016/j.actamat.2006.11.013
[6] Yin S M, Wang C H, Diao Y D, et al.Influence of grain size and texture on the yield asymmetry of Mg-3Al-1Zn alloy[J]. J. Mater. Sci. Technol., 2011, 27: 29
doi: 10.1016/S1005-0302(11)60021-2
[7] Ball E A, Prangnell P B.Tensile-compressive yield asymmetries in high strength wrought magnesium alloys[J]. Scr. Metall. Mater., 1994, 31: 111
doi: 10.1016/0956-716X(94)90159-7
[8] Yin D L, Wang J T, Liu J Q, et al.On tension-compression yield asymmetry in an extruded Mg-3Al-1Zn alloy[J]. J. Alloys Compd., 2009, 478: 789
doi: 10.1016/j.jallcom.2008.12.033
[9] Mao P L, Liu Z, Wang C Y, et al.Deformation microstructure of AZ31B magnesium alloy under high strain rate compression[J]. Chin. J. Nonferrous Met., 2009, 19: 816(毛萍莉, 刘正, 王长义 等. 高应变速率下AZ31B镁合金的压缩变形组织 [J]. 中国有色金属学报, 2009, 19: 816)
doi: 10.3321/j.issn:1004-0609.2009.05.005
[10] Watanabe H, Ishikawa K.Effect of texture on high temperature deformation behavior at high strain rates in a Mg-3Al-1Zn alloy[J]. Mater. Sci. Eng., 2009, A523: 304
doi: 10.1016/j.msea.2009.06.019
[11] Agnew S R, Duygulu Ö.Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B[J]. Int. J. Plast., 2005, 21: 1161
doi: 10.1016/j.ijplas.2004.05.018
[12] Nave M D, Barnett M R.Microstructures and textures of pure magnesium deformed in plane-strain compression[J]. Scr. Mater., 2004, 51: 881
doi: 10.1016/j.scriptamat.2004.07.002
[13] Yang Y B, Wang F C, Tan C W, et al.Plastic deformation mechanisms of AZ31 magnesium alloy under high strain rate compression[J]. Trans. Nonferrous Met. Soc. China, 2008, 18: 1043
doi: 10.1016/S1003-6326(08)60178-8
[14] Barnett M R, Keshavarz Z, Beer A G, et al.Influence of grain size on the compressive deformation of wrought Mg-3Al-1Zn[J]. Acta Mater., 2004, 52: 5093
doi: 10.1016/j.actamat.2004.07.015
[15] Barnett M R.Twinning and the ductility of magnesium alloys: Part II. "Contraction" twins[J]. Mater. Sci. Eng., 2007, A464: 8
doi: 10.1016/j.msea.2007.02.109
[16] Wan G, Wu B L, Zhang Y D, et al.Anisotropy of dynamic behavior of extruded AZ31 magnesium alloy[J]. Mater. Sci. Eng., 2010, A527: 2915
doi: 10.1016/j.msea.2010.01.023
[17] Liu Z, Zhang K, Zeng X Q.Theory and Application of Mg-Based Light Alloy [M]. Beijing: China Machine Press, 2002: 32(刘正, 张奎, 曾小勤. 镁基轻质合金理论基础及其应用 [M]. 北京: 机械工业出版社, 2002: 32)
[18] Barnett M R.Twinning and the ductility of magnesium alloys: Part I: "Tension" twins[J]. Mater. Sci. Eng., 2007, A464: 1
doi: 10.1016/j.msea.2006.12.037
[19] Jiang L, Jonas J J, Mishra R K, et al.Twinning and texture development in two Mg alloys subjected to loading along three different strain paths[J]. Acta Mater., 2007, 55: 3899
doi: 10.1016/j.actamat.2007.03.006
[20] Jiang L, Jonas J J, Luo A A, et al. Influence of {10$\bar{1}$2} extension twinning on the flow behavior of AZ31 Mg alloy [J]. Mater. Sci. Eng., 2007, A445-446: 302
doi: 10.1016/j.msea.2006.09.069
[21] Brown D W, Agnew S R, Bourke M A M, et al. Internal strain and texture evolution during deformation twinning in magnesium[J]. Mater. Sci. Eng., 2005, A399: 1
doi: 10.1016/j.msea.2005.02.016
[22] Gehrmann R, Frommert M M, Gottstein G.Texture effects on plastic deformation of magnesium[J]. Mater. Sci. Eng., 2005, A395: 338
doi: 10.1016/j.msea.2005.01.002
[23] Wang M Y, Xin R L, Wang B S, et al.Effect of initial texture on dynamic recrystallization of AZ31 Mg alloy during hot rolling[J]. Mater. Sci. Eng., 2010, A528: 2941
doi: 10.1016/j.msea.2010.11.069
[24] Christian J W, Mahajan S.Deformation twinning[J]. Prog. Mater. Sci., 1995, 39: 1
doi: 10.1016/0079-6425(94)00007-7
[25] Luo J R, Liu Q, Liu W.Influence of rolling temperature on the {1010$\bar{1}$1}-{10$\bar{1}$21}-{10$\bar{1}$1}-{10$\bar{1}$2} twinning in rolled AZ31 magnesium alloy sheets[J]. Acta Metall. Sin., 2012, 48: 717(罗晋如, 刘庆, 刘伟. 轧制温度对AZ31镁合金轧制板材中的{1010$\bar{1}$1}-{10$\bar{1}$21}-{1010$\bar{1}$1}-{10$\bar{1}$22}双孪生行为的影响 [J]. 金属学报, 2012, 48: 717)
[26] Chen Z H, Xia W J, Cheng Y Q, et al.Texture and anisotropy in magnesium alloys[J]. Chin. J. Nonferrous Met., 2005, 15: 1(陈振华, 夏伟军, 程永奇 等. 镁合金织构与各向异性 [J]. 中国有色金属学报, 2005, 15: 1)
[27] Bingert J F, Mason T A, Kaschner G C, et al.Deformation twinning in polycrystalline Zr: Insights from electron backscattered diffraction characterization[J]. Metall. Mater. Trans., 2002, 33A: 955
doi: 10.1007/s11661-002-0165-7
[1] 吴国华, 陈玉狮, 丁文江. 高性能镁合金凝固组织控制研究现状与展望[J]. 金属学报, 2018, 54(5): 637-646.
[2] 王强, 董蒙, 孙金妹, 刘铁, 苑轶. 强磁场下合金凝固过程控制及功能材料制备[J]. 金属学报, 2018, 54(5): 742-756.
[3] 季培蓓, 周立初, 周雪峰, 方峰, 蒋建清. 冷拉拔珠光体钢丝的力学性能各向异性研究[J]. 金属学报, 2018, 54(4): 494-500.
[4] 熊守美, 杜经莲, 郭志鹏, 杨满红, 吴孟武, 毕成, 曹永友. 镁合金压铸过程界面传热行为及凝固组织结构的表征与模拟研究[J]. 金属学报, 2018, 54(2): 174-192.
[5] 林艳丽, 何祝斌, 初冠南, 闫永达. 利用管状试样测试各向异性材料双向应力状态力学性能的新方法[J]. 金属学报, 2017, 53(9): 1101-1109.
[6] 张青松,朱振宇,高杰维,戴光泽,徐磊,冯健. 各向异性和偏轴加载对1050车轮钢疲劳性能的影响[J]. 金属学报, 2017, 53(3): 307-315.
[7] 郑玉峰, 杨宏韬. 血管支架用可降解金属研究进展[J]. 金属学报, 2017, 53(10): 1227-1237.
[8] 韩林原, 李旋, 储成林, 白晶, 薛烽. 流场环境中AZ31镁合金的腐蚀行为研究[J]. 金属学报, 2017, 53(10): 1347-1356.
[9] 张小农, 左敏超, 张绍翔, 吴宏流, 王文辉, 陈文智, 倪嘉桦. 医用可降解血管支架临床研究进展[J]. 金属学报, 2017, 53(10): 1215-1226.
[10] 袁广银, 牛佳林. 可降解医用镁合金在骨修复应用中的研究进展[J]. 金属学报, 2017, 53(10): 1168-1180.
[11] 奚廷斐, 魏利娜, 刘婧, 刘小丽, 甄珍, 郑玉峰. 镁合金全降解血管支架研究进展[J]. 金属学报, 2017, 53(10): 1153-1167.
[12] 闫亚琼,罗晋如,张济山,庄林忠. 强织构AZ31镁合金板材深低温轧制过程中微观组织演变及力学性能控制研究[J]. 金属学报, 2017, 53(1): 107-113.
[13] 蔡贇,孙朝阳,万李,阳代军,周庆军,苏泽兴. AZ80镁合金动态再结晶软化行为研究*[J]. 金属学报, 2016, 52(9): 1123-1132.
[14] 王峰,马德志,王志,毛萍莉,刘正. AM50-x(Zn, Y)镁合金的显微组织、力学性能与凝固行为*[J]. 金属学报, 2016, 52(9): 1115-1122.
[15] 李振亮,刘飞,袁爱萍,段宝玉,李晓伟,李一鸣. 轧制变形对喷射沉积含Nd镁合金织构及LPSO相的影响*[J]. 金属学报, 2016, 52(8): 938-944.