Please wait a minute...
金属学报  2018, Vol. 54 Issue (1): 93-99    DOI: 10.11900/0412.1961.2017.00143
  本期目录 | 过刊浏览 |
Sn对TiAl基合金烧结致密化与力学性能的影响
潘宇, 路新(), 刘程程, 孙健卓, 佟健博, 徐伟, 曲选辉
北京科技大学新材料技术研究院 北京 100083
Effect of Sn Addition on Densification and Mechanical Properties of Sintered TiAl Base Alloys
Yu PAN, Xin LU(), Chengcheng LIU, Jianzhuo SUN, Jianbo TONG, Wei XU, Xuanhui QU
Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

潘宇, 路新, 刘程程, 孙健卓, 佟健博, 徐伟, 曲选辉. Sn对TiAl基合金烧结致密化与力学性能的影响[J]. 金属学报, 2018, 54(1): 93-99.
Yu PAN, Xin LU, Chengcheng LIU, Jianzhuo SUN, Jianbo TONG, Wei XU, Xuanhui QU. Effect of Sn Addition on Densification and Mechanical Properties of Sintered TiAl Base Alloys[J]. Acta Metall Sin, 2018, 54(1): 93-99.

全文: PDF(877 KB)   HTML
摘要: 

以TiAl-8.5Nb预合金粉末为原料,添加1%Sn (原子分数)粉为强化烧结剂,采用无压烧结技术制备了高致密度的高铌TiAl合金,探究了Sn添加对TiAl基合金的烧结致密化过程、微观组织和力学性能的影响规律。研究表明:添加1%Sn可降低高铌TiAl合金粉末的烧结致密化温度,提高烧结坯的致密度及线性收缩率,从而有利于降低合金组织晶粒度,改善合金综合性能。添加Sn后,合金粉末经1500 ℃烧结2 h,其致密度可达到99.1%,线收缩率达到9.3%;合金显微组织为均匀细小的α2/γ全片层结构,片层团尺寸为40~60 μm;Sn主要固溶于γ相中,使其轴比c/a及晶胞体积增大;所制备合金的Rockwell硬度为50.1 HRC,抗压强度为2938 MPa,屈服强度为680 MPa,压缩率为29.1%,其性能指标均高于未掺杂Sn元素的高铌TiAl基合金。

关键词 TiAl合金粉末冶金Sn烧结致密化    
Abstract

High Nb containing TiAl alloys (TiAl-Nb) are a new generation of materials for high temperature structural applications because of their low density, high strength and corrosion resistance at elevated temperatures. The alloys can be processed by powder metallurgy (PM) which have more advantages including low cost-effectiveness, near net forming for complex parts with fine grain size and uniform microstructure. However, the alloy powders are difficult to achieve full densification due to their lower sintering activity, which impairs the mechanical performance of sintered parts. The present work focuses on the densification performance of TiAl-Nb alloy powders with 1%Sn (atomic fraction) as sintering aids.The effects of Sn addition on the sintering densification process, microstructure and mechanical properties of sintered alloys were investigated. The results show that 1%Sn addition can significantly reduce the sintering densification temperature of alloy powders, and increase the relative density and linear shrinkage of sintered parts. This contributes to control microstructure grain size and improve the comprehensive properties. Sintered with 1500 ℃ for 2 h, 1%Sn containing TiAl-Nb base alloys show the best densification performance, with the relative density of 99.1% and linear shrinkage of 9.3%. The alloy samples exhibit fine and uniform full lamellar microstructure, and α2/γ lamellar colonies are sized about 40~60 μm. Sn mainly dissolved into γ phase, leading to the enhancement of axial ratio c/a and unit cell volume. The sintered TiAl-Nb-1Sn samples have been found to possess superior room-temperature mechanical properties, with a Rockwell hardness of 50.1 HRC, a compressive strength of 2938 MPa, a yield strength of 680 MPa, and a compression ratio of 29.1%, which is obviously higher than those of TiAl-Nb alloys.

Key wordsTiAl alloy    powder metallurgy    Sn    sintering densification
收稿日期: 2017-04-21     
ZTFLH:  TG146.2  
基金资助:项目资助 北京市自然科学基金项目No.2163053
作者简介:

作者简介 潘 宇,男,1992年生,硕士生

图1  高铌TiAl合金粉末和Sn粉末的SEM像
图2  烧结温度对TiAl-xSn (x=0、1)合金致密度和线收缩率的影响
图3  烧结温度对TiAl-xSn (x=0、1)合金Rockwell硬度的影响
图4  不同温度烧结制备TiAl-xSn (x=0、1)合金的XRD谱
图5  不同温度烧结制备TiAl-xSn (x=0、1)合金的SEM像
图6  TiAl-xSn (x=0、1)合金室温压缩性能随烧结温度的变化关系
图7  TiAl-xSn (x=0、1)合金的室温压缩工程应力-应变曲线
图8  TiAl-xSn (x=0、1)合金压缩断裂的断口形貌
[1] Song L, Lin J P, Li J S.Phase transformation mechanisms in a quenched Ti-45Al-8.5Nb-0.2W-0.2B-0.02Y alloy after subsequent annealing at 800 ℃[J]. J. Alloys Compd., 2017, 691: 60
[2] San J J, Simas P, Schmoelzer T, et al.Atomic relaxation processes in an intermetallic Ti-43Al-4Nb-1Mo-0.1B alloy studied by mechanical spectroscopy[J]. Acta Mater., 2014, 65: 338
[3] Park S Y, Seo D Y, Kim S W, et al.High temperature oxidation of Ti-46Al-6Nb-0.5W-0.5Cr-0.3Si-0.1C alloy[J]. Intermetallics, 2016, 74: 8
[4] Lin J P, Zhao L L, Li G Y, et al.Effect of Nb on oxidation behavior of high Nb containing TiAl alloys[J]. Intermetallics, 2011, 19: 131
[5] Bean G E, Kesler M S, Manuel M V.Effect of Nb on phase transformations and microstructure in high Nb titanium aluminides[J]. J. Alloys Compd., 2014, 613: 351
[6] Chen G, Peng Y B, Zheng G, et al.Polysynthetic twinned TiAl single crystals for high-temperature applications[J]. Nat. Mater., 2016, 15: 876
[7] Li H Z, Qi Y L, Liang X P, et al.Microstructure and high temperature mechanical properties of powder metallurgical Ti-45Al-7Nb-0.3W alloy sheets[J]. Mater. Des., 2016, 106: 90
[8] Li J B, Liu Y, Liu B, et al.Microstructure characterization and mechanical behaviors of a hot forged high Nb containing PM-TiAl alloy[J]. Mater. Charact., 2014, 95: 148
[9] Liu Q, Nash P.The effect of Ruthenium addition on the microstructure and mechanical properties of TiAl alloys[J]. Intermetallic, 2011, 19: 1282
[10] Monchoux J P, Luo J S, Voisin T, et al.Deformation modes and size effect in near-γ TiAl alloys[J]. Mater. Sci. Eng., 2017, A679: 123
[11] Liu H W, Bishop D P, Plucknett K P.Densification behaviour and microstructural evolution of Ti-48Al consolidated by spark plasma sintering[J]. J. Mater. Sci., 2017, 52: 613
[12] Yang R.Advances and challenges of TiAl base alloys[J]. Acta Metall. Sin., 2015, 51: 129(杨锐. 钛铝金属间化合物的进展与挑战[J]. 金属学报, 2015, 51: 129)
[13] Han Y, Fan J L, Liu T, et al.The effect of trace nickel additive and ball milling treatment on the near-full densification behavior of ultrafine tungsten powder[J]. Int. J. Refract. Met. Hard Mater., 2012, 34: 8
[14] Wang Y H, Lin J P, He Y H, et al.Densification behavior of high Nb containing TiAl alloys through reactive hot pressing[J]. J. Univ. Sci. Technol. Beijing, 2007, 14: 251
[15] Hibino A, Kiuchi M.Pressureless combustion synthesis of dense TiAl intermetallic compounds by Ni/Al powder addition[J]. Mater. Trans., JIM, 1999, 40: 92
[16] Liu Y, Wei W F, Huang B Y, et al.Qualitative and quantitative theory of enhanced sintering in powder metallurgy[J]. Mater. Rev., 2003, 17(3): 1(刘咏, 韦伟峰, 黄伯云等. 粉末冶金强化烧结的定性与定量分析理论综述[J]. 材料导报, 2003, 17(3): 1)
[17] Qiu W T, Pang Y, Xiao Z, et al.Preparation of W-Cu alloy with high density and ultrafine grains by mechanical alloying and high pressure sintering[J]. Int. J. Refract. Met. Hard Mater., 2016, 61: 91
[18] Pan K M, Zhang L Q, Wei S Z, et al.Study on the preparation process of T2 alloy in the Mo-Si-B system[J]. Acta Metall. Sin., 2015, 51: 1377(潘昆明, 张来启, 魏世忠等. Mo-Si-B三元系中T2相合金的制备工艺研究[J]. 金属学报, 2015, 51: 1377)
[19] Zhu Q S, Fan B A.Low temperature sintering of 8YSZ electrolyte film for intermediate temperature solid oxide fuel cells[J]. Solid State Ionics, 2005, 176: 889
[20] Zhou H M, Li M L, Guo Y J, et al.Effect of MnO2 on sintering ability and properties of 8YSZ[J]. J. Cent. South Univ.(Sci. Technol.), 2012, 43: 1254(周宏明, 李淼磊, 郭雁军等. MnO2对8YSZ低温活化烧结及其性能的影响[J]. 中南大学学报(自然科学版), 2012, 43: 1254)
[21] Xia Y, Luo S D, Wu X, et al.The sintering densification, microstructure and mechanical properties of gamma Ti-48Al-2Cr-2Nb alloy with a small addition of copper[J]. Mater. Sci. Eng., 2013, A559: 293
[22] Xia Y, Schaffer G B, Qian M.The effect of a small addition of nickel on the sintering, sintered microstructure, and mechanical properties of Ti-45Al-5Nb-0.2C-0.2B alloy[J]. J. Alloys Compd., 2013, 578: 195
[23] Xia Y, Yu P, Schaffer G B, et al.Cobalt-doped Ti-48Al-2Cr-2Nb alloy fabricated by cold compaction and pressureless sintering[J]. Mater. Sci. Eng., 2013, A574: 176
[24] Soyama J, Oehring M, Limberg W, et al.The effect of zirconium addition on sintering behaviour, microstructure and creep resistance of the powder metallurgy processed alloy Ti-45Al-5Nb-0.2B-0.2C[J]. Mater. Des., 2015, 84: 87
[25] He Y H, Qu X H, Huang B Y, et al.The effect of Sn addition on the TiAl based alloy[J]. J. Central South Univ.(Sci. Technol.), 1993, 24: 788(贺跃辉, 曲选辉, 黄伯云等. 锡的添加对TiAl基合金的影响[J]. 中南大学学报(自然科学版), 1993, 24: 788)
[26] Shida Y, Anada H.The influence of ternary element addition on the oxidation behaviour of TiAl intermetallic compound in high temperature air[J]. Corros. Sci., 1993, 35: 945
[27] Wang D N, Inui H, Lin D L, et al.Effects of Sn additions on the microstructures and tensile properties of two-phase TiAl alloys[J]. Intermetallics, 1996, 4: 191
[28] Zhao J C.Effect of alloying on the microstructure and mechanical properties of Ti-48Al-2Cr-2Nb alloys [D]. Changsha: Xiangtan University, 2015(赵俊才. 合金化对Ti-48Al-2Cr-2Nb合金显微组织和力学性能的影响 [D]. 长沙: 湘潭大学, 2015)
[29] Lu X, He X B, Zhang B, et al.Microstructure and mechanical properties of a spark plasma sintered Ti-45Al-8.5Nb-0.2W-0.2B-0.1Y alloy[J]. Intermetallics, 2009, 17: 840
[1] 王福容, 张永梅, 柏国宁, 郭庆伟, 赵宇宏. Al掺杂Mg/Mg2Sn合金界面的第一性原理计算[J]. 金属学报, 2023, 59(6): 812-820.
[2] 徐磊, 田晓生, 吴杰, 卢正冠, 杨锐. 热等静压成形Inconel 718粉末合金的显微组织和力学性能[J]. 金属学报, 2023, 59(5): 693-702.
[3] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.
[4] 马国楠, 朱士泽, 王东, 肖伯律, 马宗义. SiC颗粒增强Al-Zn-Mg-Cu复合材料的时效行为和力学性能[J]. 金属学报, 2023, 59(12): 1655-1664.
[5] 李小兵, 潜坤, 舒磊, 张孟殊, 张金虎, 陈波, 刘奎. W含量对Ti-42Al-5Mn-xW合金相转变行为的影响[J]. 金属学报, 2023, 59(10): 1401-1410.
[6] 陈玉勇, 叶园, 孙剑飞. TiAl合金板材轧制研究现状[J]. 金属学报, 2022, 58(8): 965-978.
[7] 刘仁慈, 王鹏, 曹如心, 倪明杰, 刘冬, 崔玉友, 杨锐. 700℃热暴露对 β 凝固 γ-TiAl合金表面组织及形貌的影响[J]. 金属学报, 2022, 58(8): 1003-1012.
[8] 毕胜, 李泽琛, 孙海霞, 宋保永, 刘振宇, 肖伯律, 马宗义. 高能球磨结合粉末冶金法制备碳纳米管增强7055Al复合材料的微观组织和力学性能[J]. 金属学报, 2021, 57(1): 71-81.
[9] 李天瑞, 刘国怀, 于少霞, 王文娟, 张风奕, 彭全义, 王昭东. 直接包套轧制铸态Ti-46Al-8Nb合金的组织特征及热变形机制[J]. 金属学报, 2020, 56(8): 1091-1102.
[10] 刘先锋, 刘冬, 刘仁慈, 崔玉友, 杨锐. Ti-43.5Al-4Nb-1Mo-0.1B合金的包套热挤压组织与拉伸性能[J]. 金属学报, 2020, 56(7): 979-987.
[11] 刘震鹏, 闫志巧, 陈峰, 王顺成, 龙莹, 吴益雄. 金刚石工具用Cu-10Sn-xNi合金的制备和性能表征[J]. 金属学报, 2020, 56(5): 760-768.
[12] 王希,刘仁慈,曹如心,贾清,崔玉友,杨锐. 冷却速率对β凝固γ-TiAl合金硼化物和室温拉伸性能的影响[J]. 金属学报, 2020, 56(2): 203-211.
[13] 张志杰, 黄明亮. 原位研究Cu/Sn-37Pb/Cu微焊点液-固电迁移行为[J]. 金属学报, 2020, 56(10): 1386-1392.
[14] 卢正冠,吴杰,徐磊,崔潇潇,杨锐. Ti2AlNb异形粉末环件的轧制成形与性能研究[J]. 金属学报, 2019, 55(6): 729-740.
[15] 陈占兴,丁宏升,陈瑞润,郭景杰,傅恒志. 脉冲电流作用下TiAl合金凝固组织演变及形成机理[J]. 金属学报, 2019, 55(5): 611-618.