Please wait a minute...
金属学报  2017, Vol. 53 Issue (12): 1579-1587    DOI: 10.11900/0412.1961.2017.00101
  本期目录 | 过刊浏览 |
MS X70酸性环境用管线钢焊接接头氢致开裂敏感性及氢捕获效率研究
赵小宇, 黄峰(), 甘丽君, 胡骞, 刘静
武汉科技大学省部共建耐火材料与冶金国家重点实验室 武汉 430000
Hydrogen-Induced Cracking Susceptibility and Hydrogen Trapping Efficiency of the Welded MS X70 Pipeline Steel in H2S Environment
Xiaoyu ZHAO, Feng HUANG(), Lijun GAN, Qian HU, Jing LIU
The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430000, China
引用本文:

赵小宇, 黄峰, 甘丽君, 胡骞, 刘静. MS X70酸性环境用管线钢焊接接头氢致开裂敏感性及氢捕获效率研究[J]. 金属学报, 2017, 53(12): 1579-1587.
Xiaoyu ZHAO, Feng HUANG, Lijun GAN, Qian HU, Jing LIU. Hydrogen-Induced Cracking Susceptibility and Hydrogen Trapping Efficiency of the Welded MS X70 Pipeline Steel in H2S Environment[J]. Acta Metall Sin, 2017, 53(12): 1579-1587.

全文: PDF(4559 KB)   HTML
摘要: 

对MS X70管线钢母材及其焊接接头氢致开裂(HIC)敏感性进行了评估,利用OM、FE-SEM和EBSD对其显微组织、HIC裂纹及周围的晶界结构进行了观察和分析,并通过计算渗透通量J和氢有效扩散系数Deff对母材及焊接接头的氢捕获效率进行了研究。结果表明,MS X70管线钢母材及其焊接接头的HIC敏感性均不能达到欧标要求,且焊接接头比母材具有更高的HIC敏感性。焊接接头的HIC敏感性较高主要归结于:以条状贝氏体为主的焊缝组织对H原子的捕获效率高于母材;焊接接头中较多的作为H通道的小角度晶界可通过提高大角度晶界氢捕获效率从而增加其裂纹敏感率;焊接接头中较少量低能重位点阵(CSL)晶界和Σ13b、Σ29b重位晶界降低了大角度晶界裂纹扩展抗力从而使其具有更高的HIC敏感性。

关键词 MS X70管线钢焊接接头晶界氢致开裂(HIC)氢捕获效率    
Abstract

Pipeline steels for sour oil and gas containing H2S generally suffer from either hydrogen-induced cracking (HIC) or sulfide stress corrosion cracking (SSC). Oil and gas containing high concentration H2S are noxious to pipeline steels because of the hydrogen-induced corrosion. In this study, HIC susceptibility of welded MS X70 pipeline steels was evaluated in NACE “A” solution at room temperature. Meanwhile, microstructure and regions near a HIC crack in the MS X70 base steel and its welded joint were analyzed through OM, SEM and EBSD. The hydrogen trapping efficiency was also investigated by measuring the permeability (J) and the effective hydrogen diffusivity (Deff). The results showed that both base metal and welded joint were highly susceptible to HIC and the later steel sample was more vulnerable than the former. This higher susceptibility could be primarily attributed to the following effects: the higher hydrogen trapping efficiency of bainitic lath microstructure in the welded joint; the more low angle grain boundary in the welded joint also made it easier to crack by improving the hydrogen trapping efficiency of high angle grain boundary; the less amount of coincidence site lattice grain boundary and Σ13b、Σ29b lead to higher HIC susceptibility by decreasing the resistance to crack of high angle grain boundary.

Key wordsMS X70 pipeline steel    welded joint    grain boundary    hydrogen-induced cracking (HIC)    hydrogen trapping efficiency
收稿日期: 2017-03-28     
ZTFLH:  TG172.3  
基金资助:国家自然科学基金项目No.51571154和湖北省科技支撑计划项目No.2015BAA083
作者简介:

作者简介 赵小宇,男,1992年生,硕士生

Sample C Si Mn P S Cu Cr Ni Mo Nb V Fe
Base metal 0.046 0.257 1.109 0.007 0.001 0.091 0.234 0.090 0.105 0.036 0.028 Bal.
Welding wire 0.068 0.260 1.320 0.011 0.019 - 0.370 0.450 0.110 - 0.002 Bal.
表1  MS X70管线钢和药芯焊丝的主要化学成分
图1  MS X70管线钢焊接接头宏观照片
图2  MS X70管线钢焊接接头显微组织的OM像
图3  MS X70管线钢焊接接头显微硬度分布图
Sample CSR CLR CTR
Base metal
Welded joint
0.43
0.50
13.00
22.95
5.35
12.30
表2  MS X70管线钢母材和焊接接头氢致开裂(HIC)敏感性参数
图4  MS X70管线钢母材和焊接接头放氢电流强度曲线
图5  MS X70管线钢母材和焊接接头氢渗透曲线
Sample J / (molcm-1s-1) Deff / (cm2s-1) C0 / (molcm-3)
Base metal 19.40×10-11 1.53×10-6 1.27×10-5
Welded joint 6.07×10-11 0.93×10-6 0.40×10-5
表3  MS X70管线钢母材和焊接接头氢渗透动力学参数
图6  MS X70管线钢母材和焊接接头HIC裂纹取向成像图
图7  MS X70管线钢母材和焊接接头HIC裂纹周围晶界分布图
图8  MS X70管线钢母材及其焊接接头不同晶界所占体积分数
图9  MS X70管线钢母材和焊接接头HIC裂纹附近重位点阵晶界频度图
[1] Zhou C S, Zheng S Q, Chen C F, et al.The effect of the partial pressure of H2S on the permeation of hydrogen in low carbon pipeline steel[J]. Corros. Sci., 2013, 67: 184
[2] Al-Mansour M, Alfantazi A M, El-boujdaini M. Sulfide stress cracking resistance of API-X100 high strength low alloy steel[J]. Mater. Des., 2009, 30: 4088
[3] Hejazi D, Haq A J, Yazdipour N, et al.Effect of manganese content and microstructure on the susceptibility of X70 pipeline steel to hydrogen cracking[J]. Mater. Sci. Eng., 2012, A551: 40
[4] Zhou C S, Huang Q Y, Guo Q, et al.Sulphide stress cracking behaviour of the dissimilar metal welded joint of X60 pipeline steel and Inconel 625 alloy[J]. Corros. Sci., 2016, 110: 242
[5] Olden V, Alvaro A, Akselsen O M.Hydrogen diffusion and hydrogen influenced critical stress intensity in an API X70 pipeline steel welded joint—Experiments and FE simulations[J]. Int. J. Hydrogen Energy, 2012, 37: 11474
[6] Zhao W M, Zhao T M, Zhao Y J, et al.Hydrogen permeation and embrittlement susceptibility of X80 welded joint under high-pressure coal gas environment[J]. Corros. Sci., 2016, 111: 84
[7] Forero A B, Ponciano J A C, Bott I S. Susceptibility of pipeline girth welds to hydrogen embrittlement and sulphide stress cracking[J]. Mater. Corros., 2014, 65: 531
[8] Dong C F, Xiao K, Liu Z Y, et al.Hydrogen induced cracking of X80 pipeline steel[J]. Int. J. Min. Metall. Mater., 2010, 17: 579
[9] Park G T, Koh S U, Jung H G, et al.Effect of microstructure on the hydrogen trapping efficiency and hydrogen induced cracking of linepipe steel[J]. Corros. Sci., 2008, 50: 1865
[10] Chang K D, Gu J L, Fang H S, et al.Effects of heat-treatment process of a novel bainite/martensite dual-phase high strength steel on its susceptibility to hydrogen embrittlement[J]. ISIJ Int., 2001, 41: 1397
[11] Arafin M A, Szpunar J A.Effect of bainitic microstructure on the susceptibility of pipeline steels to hydrogen induced cracking[J]. Mater. Sci. Eng., 2011, A528: 4927
[12] Shi X B, Yan W, Wang W, et al.Effect of microstructure on hydrogen induced cracking behavior of a high deformability pipeline steel[J]. J. Iron Steel. Res., 2015, 22: 937
[13] Hardie D, Charles E A, Lopez A H.Hydrogen embrittlement of high strength pipeline steels[J]. Corros. Sci., 2006, 48: 4378
[14] Huang F, Liu S, Liu J, et al.Sulfide stress cracking resistance of the welded WDL690D HSLA steel in H2S environment[J]. Mater. Sci. Eng., 2014, A591: 159
[15] Huang F, Li X G, Liu J, et al.Hydrogen-induced cracking susceptibility and hydrogen trapping efficiency of different microstructure X80 pipeline steel[J]. J. Mater. Sci., 2011, 46: 715
[16] Huang F, Liu J, Deng Z J, et al.Effect of microstructure and inclusions on hydrogen induced cracking susceptibility and hydrogen trapping efficiency of X120 pipeline steel[J]. Mater. Sci. Eng., 2010, A527: 6997
[17] Zhang X L, Zhuang C J, Ji L K, et al.Effective particle size of high grade pipeline steels[J]. Mater. Mech. Eng., 2007, 31(3): 4(张小立, 庄传晶, 吉玲康等. 高钢级管线钢的有效晶粒尺寸[J]. 机械工程材料, 2007, 31(3): 4)
[18] Dong J M, Mao Q Y, Bi Z Y, et al.Analysis on microstructure and impact toughness of X100 and X80 pipeline steel[J]. Welded Pipe Tube, 2014, 37(12): 16(董俊明, 毛秋英, 毕宗岳等. X100和X80管线钢组织与冲击性能分析[J]. 焊管, 2014, 37(12): 16)
[19] Saleh A A, HejazI D, Gazder A A, et al. Investigation of the effect of electrolytic hydrogen charging of X70 steel: II. Microstructural and crystallographic analyses of the formation of hydrogen induced cracks and blisters[J]. Int. J. Hydrogen Energy, 2016, 41: 12424
[20] Sun Y W, Chen J Z, Liu J.Study on hydrogen embrittlement susceptibility of 1000 MPa grade 0Cr16Ni5Mo steel[J]. Acta Metall. Sin., 2015, 51: 1315(孙永伟, 陈继志, 刘军. 1000 MPa级0Cr16Ni5Mo钢的氢脆敏感性研究[J]. 金属学报, 2015, 51: 1315)
[21] Masoumi M, Silva C C, de Abreu H F G. Effect of crystallographic orientations on the hydrogen-induced cracking resistance improvement of API 5L X70 pipeline steel under various thermomechanical processing[J]. Corros. Sci., 2016, 111: 121
[22] Ma H C, Liu Z Y, Du C W, et al.Stress corrosion cracking of E690 steel as a welded joint in a simulated marine atmosphere containing sulphur dioxide[J]. Corros. Sci., 2015, 100: 627
[23] Haq A J, Muzaka K, Dunne D P, et al.Effect of microstructure and composition on hydrogen permeation in X70 pipeline steels[J]. Int. J. Hydrogen Energy, 2013, 38: 2544
[24] Mohtadi-Bonab M A, Eskandari M, Rahman K M M, et al. An extensive study of hydrogen-induced cracking susceptibility in an API X60 sour service pipeline steel[J]. Int. J. Hydrogen Energy, 2016, 41: 4185
[25] Marchetti L, Herms E, Laghoutaris P, et al.Hydrogen embrittlement susceptibility of tempered 9%Cr-1%Mo steel[J]. Int. J. Hydrogen Energy, 2011, 36: 15880
[26] Peng X H, Liu J, Huang F, et al.Effect of microstructure on hydrogen-induced cracking propagation and hydrogen trapping efficiency of pipeline steel[J]. Corros. Prot., 2013, 34: 882(彭先华, 刘静, 黄峰等. 微观组织对管线钢氢致裂纹扩展方式及氢捕获效率的影响[J]. 腐蚀与防护, 2013, 34: 882)
[27] Mohtadi-Bonab M A, Eskandari M, Szpunar J A. Texture, local misorientation, grain boundary and recrystallization fraction in pipeline steels related to hydrogen induced cracking[J]. Mater. Sci. Eng., 2015, A620: 97
[28] Hu C L, Xia S, Li H, et al.Effect of grain boundary network on the intergranular stress corrosion cracking of 304 stainless steel[J]. Acta Metall. Sin., 2011, 47: 939(胡长亮, 夏爽, 李慧等. 晶界网络特征对304不锈钢晶间应力腐蚀开裂的影响[J]. 金属学报, 2011, 47: 939)
[29] Mohtadi-Bonab M A, Karimdadashi R, Eskandari M, et al. Hydrogen-induced cracking assessment in pipeline steels through permeation and crystallographic texture measurements[J]. J. Mater. Eng. Perform., 2016, 25: 1781
[30] Zhang T M, Wang Y, Zhao W M, et al.Hydrogen permeation parameters of X80 steel and welding HAZ under high pressure coal gas environment[J]. Acta Metall. Sin., 2015, 51: 1101(张体明, 王勇, 赵卫民等. 高压煤制气环境下X80钢及热影响区的氢渗透参数研究[J]. 金属学报, 2015, 51: 1101)
[31] Arafin M A, Szpunar J A.A new understanding of intergranular stress corrosion cracking resistance of pipeline steel through grain boundary character and crystallographic texture studies[J]. Corros. Sci., 2009, 51: 119
[1] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[2] 徐永生, 张卫刚, 徐凌超, 但文蛟. 铁素体晶间变形协调与硬化行为模拟研究[J]. 金属学报, 2023, 59(8): 1042-1050.
[3] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[4] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[5] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[6] 李昕, 江河, 姚志浩, 董建新. O原子对高温合金基体NiCoNiCr晶界作用的理论计算分析[J]. 金属学报, 2023, 59(2): 309-318.
[7] 杨杜, 白琴, 胡悦, 张勇, 李志军, 蒋力, 夏爽, 周邦新. GH3535合金中晶界特征对碲致脆性开裂影响的分形分析[J]. 金属学报, 2023, 59(2): 248-256.
[8] 刘路军, 刘政, 刘仁辉, 刘永. Nd90Al10 晶界调控对晶界扩散磁体磁性能和微观结构的影响[J]. 金属学报, 2023, 59(11): 1457-1465.
[9] 吴进, 杨杰, 陈浩峰. 纳入残余应力时不同拘束下DMWJ的断裂行为[J]. 金属学报, 2022, 58(7): 956-964.
[10] 王江伟, 陈映彬, 祝祺, 洪哲, 张泽. 金属材料的晶界塑性变形机制[J]. 金属学报, 2022, 58(6): 726-745.
[11] 李海勇, 李赛毅. Al <111>对称倾斜晶界迁移行为温度相关性的分子动力学研究[J]. 金属学报, 2022, 58(2): 250-256.
[12] 骆文泽, 胡龙, 邓德安. SUS316不锈钢马鞍形管-管接头的残余应力数值模拟及高效计算方法开发[J]. 金属学报, 2022, 58(10): 1334-1348.
[13] 刘仲武, 何家毅. 钕铁硼永磁晶界扩散技术和理论发展的几个问题[J]. 金属学报, 2021, 57(9): 1155-1170.
[14] 胡标, 张华清, 张金, 杨明军, 杜勇, 赵冬冬. 界面热力学与晶界相图的研究进展[J]. 金属学报, 2021, 57(9): 1199-1214.
[15] 倪珂, 杨银辉, 曹建春, 王刘行, 刘泽辉, 钱昊. 18.7Cr-1.0Ni-5.8Mn-0.2NNi型双相不锈钢的大变形热压缩软化行为[J]. 金属学报, 2021, 57(2): 224-236.