Please wait a minute...
金属学报  2017, Vol. 53 Issue (11): 1495-1503    DOI: 10.11900/0412.1961.2017.00077
  研究论文 本期目录 | 过刊浏览 |
22MnB5热成形钢奥氏体化时热镀Al-10%Si镀层组织的演化
袁训华(), 张启富
新冶高科技集团有限公司先进金属材料涂镀国家工程实验室 北京 100081
Microstructure Evolution of Hot-Dip Al-10%Si Coating During the Austenitization of 22MnB5 Hot Stamping Steel
Xunhua YUAN(), Qifu ZHANG
National Engineering Laboratory of Advanced Coating Technology for Metals, New Metallurgy Hi-Tech Group Co., Ltd., Beijing 100081, China
引用本文:

袁训华, 张启富. 22MnB5热成形钢奥氏体化时热镀Al-10%Si镀层组织的演化[J]. 金属学报, 2017, 53(11): 1495-1503.
Xunhua YUAN, Qifu ZHANG. Microstructure Evolution of Hot-Dip Al-10%Si Coating During the Austenitization of 22MnB5 Hot Stamping Steel[J]. Acta Metall Sin, 2017, 53(11): 1495-1503.

全文: PDF(3984 KB)   HTML
  
摘要: 

利用SEM观察了22MnB5钢在900 ℃不同奥氏体化时间下,热镀Al-10%Si (质量分数)镀层的微观组织变化情况,利用EDS和GD-OES分析了奥氏体化后热镀Al-10%Si镀层的元素分布。结果表明,22MnB5钢奥氏体化前,热镀Al-10%Si镀层主要由纯Al、纯Si和二者共晶反应形成的金属间化合物Fe2SiAl7组成,在Fe2SiAl7和钢基体之间存在一层薄薄的由Fe2Al5和FeAl3组成的化合物层。900 ℃奥氏体化后,热镀Al-10%Si镀层中的三元共晶相Al+Si+τ6逐渐转变为三元Al-Fe-Si或二元Fe-Al金属间化合物。奥氏体化时间为2 min时,镀层由Fe2SiAl7、Fe2Al5和FeAl2组成;奥氏体化时间为5 min时,镀层由FeAl2、Fe2SiAl2和Fe5SiAl4组成;奥氏体化时间为8 min时,镀层由FeAl2和Fe5SiAl4组成。由于Fe2SiAl2和镀层/钢基体界面扩散层中Al原子的扩散系数远大于Fe原子,导致从镀层向钢基体晶界及晶粒内扩散并与之反应所消耗Al原子的量远大于从钢基体扩散到镀层中的Fe原子量,从钢基体中流入到镀层中的空位数量远大于从镀层中流入到钢基体中的空位数量。原子的不平衡扩散及镀层/钢基体界面空位数量的富余使得扩散反应层与镀层的交界区域形成了Kirkendall空洞。22MnB5钢奥氏体化时,热镀Al-10%Si镀层表面形成一层稳定的Al2O3氧化膜,镀层的高温氧化现象非常有限,热镀Al-10%Si镀层可以作为22MnB5钢热成形时的保护层。但热镀Al-10%Si镀层扩散过程中产生的脆性金属间化合物因高温塑性不足而导致镀层中产生大量垂直于镀层/钢基体界面并贯穿整个镀层的微裂纹,从而影响镀层的防护性能。

关键词 22MnB5热成形钢热镀Al-10%Si镀层扩散金属间化合物Kirkendall效应    
Abstract

Hot stamping is an alternative technology to produce ultra-high strength steel (UHSS) with a tensile strength above 1 GPa for automotive bodies. At present, the hot-dip Al-10%Si (mass fraction) coating is used as a shield coating for the hot stamping steels, which protects the steels from surface oxidation and decarburization, and enhances their corrosion resistance. However, the microstructure evolution and compounds of hot-dip Al-10%Si coating during austenitization of 22MnB5 hot stamping steel are not clear yet. In this work, the thermo-mechanically induced microstructure evolution of hot-dip Al-10%Si coating is observed using SEM after austenitization of 22MnB5 hot stamping steel at 900 ℃ for different times, and the elemental depth profiles are analyzed in hot-dip Al-10%Si coating by EDS and GD-OES. The results show that before austenitization, the hot-dip Al-10%Si coating consisted of an aluminum matrix, pure silicon, and the intermetallic compound Fe2SiAl7, which was formed by eutectic reaction, there was a thin layer, which was composed of Fe2Al5 and FeAl3 between the intermetallic compound Fe2SiAl7 and the steel substrate. When 22MnB5 hot stamping steel was austenitized at 900 ℃, the ternary eutectic phase Al+Si+τ6 was transformed into an Al-Fe-Si ternary intermetallic compound or Fe-Al binary intermetallic compound gradually in the hot-dip Al-10%Si coating. When the austenitizing time was 2 min, the Al-10%Si coating was composed of the intermetallic compound Fe2SiAl7, Fe2Al5 and FeAl2 phases; when the austenitizing time was 5 min, the Al-10%Si coating was composed of FeAl2, Fe2SiAl2 and Fe5SiAl4 phases; when the austenitizing time was 8 min, the Al-10%Si coating was composed of FeAl2 and Fe5SiAl4 phases. Because the diffusion rate of Al atoms was much larger than that of Fe atoms in the diffusion layer of intermetallic compound Fe2SiAl2 and coating/steel substrate, the amount of Al atoms which diffused and reacted from the coating to the grain boundaries or grain of steel substrate was much larger than that of the Fe atoms which diffused from the steel substrate to the Al-10%Si coating, also the number of vacancies which diffused from the steel substrate to the Al-10%Si coating was much larger than the other way round. Due to this imbalance, the Kirkendall void was formed in the interface between the diffusion reaction layer and the Al-10%Si the coating. The hot-dip Al-10%Si coating can be used as the protective layer, since it has a stable Al2O3 film formed on its surface, and its thermal oxidation was very limited, during the 22MnB5 hot stamping steel austenitizing. But the protective performances of Al-10%Si coating could be poor, because the high temperature ductility of brittle intermetallic compound was low, which induced a lot of micro cracks that were perpendicular to the interface of coating/steel substrate, and penetrated the whole coating during the diffusion process of hot-dip Al-10%Si coating.

Key words22MnB5 hot stamping steel    hot-dip Al-10%Si coating    diffusion    intermetallic    Kirkendall effect
收稿日期: 2017-03-09     
ZTFLH:  TG174.4  
基金资助:国家自然科学基金项目No.51071052和“十二五”国家科技支撑计划项目No.2012BAJ13B03
作者简介:

作者简介 袁训华,男,1979年生,高级工程师,博士

图1  22MnB5钢热成形的工艺流程图
图2  22MnB5钢热成形过程示意图
图3  奥氏体化前热镀Al-10%Si镀层断面组织的SEM像
图4  奥氏体化前热镀Al-10%Si镀层GD-OES分析结果
图5  热镀Al-10%Si镀层凝固过程的路径
图6  900 ℃不同奥氏体化时间后22MnB5钢热镀Al-10%Si镀层断面组织的SEM像
图7  900 ℃不同奥氏体化时间后22MnB5钢热镀Al-10%Si镀层GD-OES分析结果
Location Al Si Fe Phase
1 96.03 1.45 2.52 Pure Al
2 75.83 2.44 21.73 FeAl3
3 66.67 11.74 21.59 Fe2SiAl7
4 76.07 2.09 21.84 FeAl3
5 68.03 9.64 22.33 Fe2SiAl7
6 58.18 12.64 29.18 Fe5SiAl4+Fe2SiAl2
7 36.96 14.52 48.52 Fe2SiAl2
8 36.89 13.49 49.62 Fe5SiAl4
9 64.29 2.39 33.32 FeAl2
10 70.79 1.89 27.32 Fe2Al5
表1  图6b中热镀Al-10%Si镀层不同位置的半定量EDS分析结果
图8  900 ℃不同奥氏体化时间后22MnB5钢热成形后热镀Al-10%Si镀层/钢基体界面Kirkendall空洞形成和长大的SEM像
图9  900 ℃下热镀Al-10%Si镀层增重与奥氏体化时间的关系
图10  900 ℃时热镀Al-10%Si镀层在不同奥氏体化时间下O元素深度分布的GD-OES分析结果
图11  22MnB5钢奥氏体化时Fe-Al-Si三元合金相图中金属间化合物相的转变过程和反应路径
[1] Kang Y L.Lightweight vehicle, advanced high strength steel and energy-saving and emission reduction[J]. Iron Steel, 2008, 43(6): 1(康永林. 汽车轻量化先进高强钢与节能减排[J]. 钢铁, 2008, 43(6): 1)
[2] Jenner F.Investigation of the intermetallic coating formed during processing of aluminum-coated boron heat-treatable steels [A]. Proceedings of the XIth International Congress and Exposition[C]. Orlando: Society for Experimental Mechanics, 2008: 37
[3] Barcellona A, Palmeri D.Effect of plastic hot deformation on the hardness and continuous cooling transformations of 22MnB5 microalloyed boron steel[J]. Metall. Mater. Trans, 2009, 40A: 1160
[4] Abdulhay B, Bourouga B, Dessain C, et al.Experimental study of heat transfer in hot stamping process[J]. Int. J. Mater. Form., 2009, 2: 255
[5] Ma N, Shen G Z, Zhang Z H, et al.Material performance of hot-forming high strength steel and its application in vehicle body[J]. Chin. J. Mech. Eng., 2011, 47(8): 60(马宁, 申国哲, 张宗华等. 高强度钢板热冲压材料性能研究及在车身设计中的应用[J]. 机械工程学报, 2011, 47(8): 60)
[6] Nakagawa K, Nakagaito T, Yokata T, et al.Effect of depth of crack on fatigue property in Zn-Ni coated press hardened steel [A]. 5th International Conference on Proceedings on Hot Sheet Metal Forming of High-Performance Steel[C]. Toronto: Association for Iron & Steel Technology, 2015: 77
[7] Kolleck R, Veit R, Merklein M, et al.Investigation on induction heating for hot stamping of boron alloyed steels[J]. CIRP Ann. Manuf. Technol., 2009, 58(1): 275
[8] Naganathan A.Hot stamping of manganese boron steel [D]. Columbus: Ohio State University, 2010: 31
[9] Han Q H, Bi W Z, Jin X Y, et al.Low temperature hot forming of medium-Mn steel [A]. 5th International Conference on Hot Sheet Metal Forming of High-Performance Steel[C]. Toronto: Association for Iron & Steel Technology, 2015: 381
[10] Xu W L, Guan S R, Ai J, et al.Introduction of sheet metal hot-forming[J]. J. Plast. Eng., 2009, 16(4): 39(徐伟力, 管曙荣, 艾键等. 钢板热冲压新技术介绍[J]. 塑性工程学报, 2009, 16(4): 39)
[11] Liu H S, Liu W, Bao J, et al.Numerical and experimental investigation into hot forming of ultra high strength steel sheet[J]. J. Mater. Eng. Perform., 2011, 20: 1
[12] Naderi M, Ketabchi M, Abbasi M, et al.Semi-hot stamping as an improved process of hot stamping[J]. J. Mater. Sci. Technol., 2011, 27: 369
[13] Naderi M, Ketabchi M, Abbasi M, et al.Analysis of microstructure and mechanical properties of different high strength carbon steels after hot stamping[J]. J. Mater. Process. Technol., 2011, 211: 1117
[14] Liu H P, Jin X J, Dong H, et al.Martensitic microstructural transformations from the hot stamping, quenching and partitioning process[J]. Mater. Charact., 2011, 62: 223
[15] Sengoku A, Takebayashi H, Matsumura K.Microstructural and phase evolution of galvannealed coating during hot stamping heating [A]. 5th International Conference on Proceedings on Hot Sheet Metal Forming of High-Performance Steel[C]. Toronto: Association for Iron & Steel Technology, 2015: 363
[16] Suehiro M, Kusumi K, Miyakoshi T, et al.Properties of aluminum-coated steels for hot-forming[J]. Nippon Steel Tech. Rep., 2003, 88: 16
[17] Maki J, Kurosaki M, Kusumi K, et al.Effect of heating condition and hot forming on corrosion resistance of hot stamped aluminized steels [A]. 3th International Conference on Proceedings on Hot Sheet Metal Forming of High-Performance Steel[C]. Kassel: Association for Iron & Steel Technology, 2011: 449
[18] Dosdat L, Petitjean J, Vietoris T, et al.Corrosion resistance of different metallic coatings on press-hardened steels for automotive[J]. Steel Res. Int., 2011, 82: 726
[19] Fan D W, De Cooman B C. State-of-the-knowledge on coating systems for hot stamped parts[J]. Steel Res. Int., 2012, 83: 412
[20] Grigorieva R, Drillet P, Mataigne J M, et al. Phase transformations in the Al-Si coating during the austenitization step [J]. Solid State Phenom., 2011, 172-174: 784
[21] Luther F, Koll T, Braun M.Laboratory study on the performance of zinc and aluminum based coatings for a direct hot press forming process [A]. 8th International Conference on Zinc and Zinc Alloy Coated Steel Sheet[C]. Genova: Associazione Italiana Di Metallurgia, 2011: 379
[22] Fan D W, Kim H S, Oh J K, et al.Coating degradation in hot press forming[J]. ISIJ Int., 2010, 50: 561
[23] Chang Y Y, Tsaur C C, Rock J C.Microstructure studies of an aluminide coating on 9Cr-1Mo steel during high temperature oxidation[J]. Surf. Coat. Technol., 2006, 200: 6588
[24] Borsetto F, Ghiotti A, Bruschi S. Investigation of the high strength steel Al-Si coating during hot stamping operations [J]. Key Eng. Mater., 2009, 410-411: 289
[25] Young D J.High temperature oxidation and corrosion of metals[M]. Oxford, UK: Elsevier, 2008: 16
[26] Liu B J.Hot Dip Aluminizing Steel [M]. Beijing: Metallurgical Industry Press, 1995: 12(刘邦津. 钢材的热浸镀铝 [M]. 北京: 冶金工业出版社, 1995: 12)
[27] Paul A, Van Dal M J H, Kodentsov A A, et al. The kirkendall effect in multiphase diffusion[J]. Acta Mater., 2004, 52: 623
[28] Maitra T, Gupta S P.Intermetallic compound formation in Fe-Al-Si ternary system: Part II[J]. Mater. Charact., 2002, 49: 293
[29] Grigorieva R, Drillet P, Mataigne J M, et al.Study of phase transformations in Al-Si coating during the austenitization step [A]. 8th International Conference on Zinc and Zinc Alloy Coated Steel Sheet[C]. Genova: Associazione Italiana Di Metallurgia, 2011: 331
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 徐文国, 郝文江, 李应举, 赵庆彬, 卢炳聿, 郭和一, 刘天宇, 冯小辉, 杨院生. 微量AlTiInconel 690合金高温氧化行为的影响[J]. 金属学报, 2023, 59(12): 1547-1558.
[3] 刘路军, 刘政, 刘仁辉, 刘永. Nd90Al10 晶界调控对晶界扩散磁体磁性能和微观结构的影响[J]. 金属学报, 2023, 59(11): 1457-1465.
[4] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[5] 沈莹莹, 张国兴, 贾清, 王玉敏, 崔玉友, 杨锐. SiCf/TiAl复合材料界面反应及热稳定性[J]. 金属学报, 2022, 58(9): 1150-1158.
[6] 李细锋, 李天乐, 安大勇, 吴会平, 陈劼实, 陈军. 钛合金及其扩散焊疲劳特性研究进展[J]. 金属学报, 2022, 58(4): 473-485.
[7] 丁宗业, 胡侨丹, 卢温泉, 李建国. 基于同步辐射X射线成像液/固复层界面氢气泡的形核、生长演变与运动行为的原位研究[J]. 金属学报, 2022, 58(4): 567-580.
[8] 化雨, 陈建国, 余黎明, 司永宏, 刘晨曦, 李会军, 刘永长. Cr铁素体耐热钢与奥氏体耐热钢的异种材料扩散连接接头组织演变及力学性能[J]. 金属学报, 2022, 58(2): 141-154.
[9] 周丽君, 位松, 郭敬东, 孙方远, 王新伟, 唐大伟. 基于飞秒激光时域热反射法的微尺度Cu-Sn金属间化合物热导率研究[J]. 金属学报, 2022, 58(12): 1645-1654.
[10] 刘仲武, 何家毅. 钕铁硼永磁晶界扩散技术和理论发展的几个问题[J]. 金属学报, 2021, 57(9): 1155-1170.
[11] 陈胜虎, 戎利建. 超细晶铁素体-马氏体钢的高温氧化成膜特性及其对Pb-Bi腐蚀行为的影响[J]. 金属学报, 2021, 57(8): 989-999.
[12] 李娟, 赵宏龙, 周念, 张英哲, 秦庆东, 苏向东. CoCrFeNiCu高熵合金与304不锈钢真空扩散焊[J]. 金属学报, 2021, 57(12): 1567-1578.
[13] 刘晨曦, 毛春亮, 崔雷, 周晓胜, 余黎明, 刘永长. 低活化铁素体/马氏体钢组织调控及其固相连接研究进展[J]. 金属学报, 2021, 57(11): 1521-1538.
[14] 孙正阳, 杨超, 柳文波. UO2烧结过程的相场模拟[J]. 金属学报, 2020, 56(9): 1295-1303.
[15] 王超, 张旭, 王玉敏, 杨青, 杨丽娜, 张国兴, 吴颖, 孔旭, 杨锐. SiCf/Ti65复合材料界面反应与基体相变机理[J]. 金属学报, 2020, 56(9): 1275-1285.