Please wait a minute...
金属学报  2017, Vol. 53 Issue (8): 937-946    DOI: 10.11900/0412.1961.2017.00038
  本期目录 | 过刊浏览 |
600 MPa级Nb-Ti微合金化高成形性元宝梁用钢的强化机制
惠亚军1,2(), 潘辉1, 刘锟1, 李文远1, 于洋1, 陈斌1, 崔阳1
1 首钢技术研究院薄板研究所 北京 1000432 首钢总公司绿色可循环钢铁流程北京市重点实验室 北京 100043
Strengthening Mechanism of 600 MPa Grade Nb-Ti Microalloyed High Formability Crossbeam Steel
Yajun HUI1,2(), Hui PAN1, Kun LIU1, Wenyuan LI1, Yang YU1, Bin CHEN1, Yang CUI1
1 Sheet Metal Research Institute, Shougang Research Institute of Technology, Beijing 100043, China
2 Beijing Key Laboratory of Green Recyclable Process for Iron & Steel Production, Shougang Group, Beijing 100043, China
引用本文:

惠亚军, 潘辉, 刘锟, 李文远, 于洋, 陈斌, 崔阳. 600 MPa级Nb-Ti微合金化高成形性元宝梁用钢的强化机制[J]. 金属学报, 2017, 53(8): 937-946.
Yajun HUI, Hui PAN, Kun LIU, Wenyuan LI, Yang YU, Bin CHEN, Yang CUI. Strengthening Mechanism of 600 MPa Grade Nb-Ti Microalloyed High Formability Crossbeam Steel[J]. Acta Metall Sin, 2017, 53(8): 937-946.

全文: PDF(1476 KB)   HTML
  
摘要: 

采用OM、SEM和TEM等方法,对600 MPa级Nb-Ti微合金化高成形性元宝梁用钢的组织与力学性能进行了测试表征,并分析了强化机制。结果表明,终轧温度对实验用钢的组织与力学性能有显著影响,随着终轧温度的降低,钢中铁素体晶粒尺寸逐渐减小,位错密度逐渐增加,析出物尺寸逐渐减小、数量逐渐增多、Nb/Ti原子比逐渐增大,屈服强度与抗拉强度均呈现出单调上升的规律,而延伸率存在一个最佳温度,终轧温度为840 ℃时具有最优的力学性能,其屈服强度与抗拉强分别达到了541与615 MPa,延伸率为31.0%,-60 ℃冲击功为117 J。(Nb, Ti)C在奥氏体中析出的NrT与PTT曲线表明,在实验温度范围内,均匀形核与位错线形核的形核率随温度的降低而提高,形核孕育时间随温度的降低而缩短,这与观察到的析出物尺寸随着终轧温度的降低而减小、析出物的数量随着终轧温度的降低而增多的规律相符。细晶强化与位错强化是实验用钢主要强化方式,细晶强化占总屈服强度的46%~48%,位错强化占总屈服强度的18%~25%,析出强化对屈服强度的贡献较小,约2%左右。

关键词 600 MPa级Nb-Ti微合金化高成形性元宝梁用钢强化机制终轧温度    
Abstract

Automobile beam steel with high strength is the development trend of the automotive industry, which will help to conserve resources and protect the environment. The crossbeam as an important part of the frame, its strength also affects the overall strength of the frame, which will affect the safety performance of vehicles. At present, the crossbeam steel of heavy-duty vehicles is mainly Q235B and Q345C. About 3% of the crossbeams occur cracking problems when heavy-duty vehicles drive about 10000 km or about half a year or so. The strength increasing will cause the cracking in the forming process. Therefore, it is of great significance to develop a high strength crossbeam steel with high fatigue and high formability. In this work, the microstructure, properties and strengthening mechanism of 600 MPa grade Nb-Ti microalloyed high formability crossbeam steel were investigated by OM, SEM and TEM. The results show that the finish rolling temperature has a considerable influence on the microstructure and mechanical strength, with the decreasing of finish rolling temperature, the ferrite grain size and the size of precipitates decreases gradually; dislocation density, the number of precipitates and the ratio of Nb/Ti increase gradually; both the yield strength and tensile strength increase monotonously, while the elongation has an optimum temperature. The optimal mechanical properties were obtained when the finish rolling temperature is 840 ℃, and the yield strength, tensile strength, elongation and impact energy at -60 ℃ reached 541 MPa, 615 MPa, 31.0% and 117 J, respectively. The NrT and PTT curves of (Nb, Ti)C precipitated in the austenite showed that the nucleation rate of uniform nucleation and dislocation linear nucleation increases and the nucleation time is shortened with the decrease of temperature in the experimental temperature range, which is consistent with the observation result that the size of precipitates decreases with the reduction of the finish rolling temperature, while the number of precipitates increases. The grain refinement strengthening and dislocation strengthening are the main strengthening modes of the steel, the grain refinement strengthening accounts for 46%~48% of the yield strength, the dislocation strengthening accounts for 18%~25%, while the precipitation strengthening only contributes 2% of the yield strength.

Key words600 MPa grade    Nb-Ti microalloyed    high formability    crossbeam steel    strengthening mechanism    finish rolling temperature
收稿日期: 2017-02-13     
ZTFLH:  TG142.1  
作者简介:

作者简介 惠亚军,男,1988年生,硕士

Finish rolling Yield Tensile Elongation Yield ratio 180° d=a
temperature strength strength % cold bending
MPa MPa
920 464 541 29.5 0.858 OK
880 510 583 31.5 0.875 OK
840 541 615 31.0 0.878 OK
800 555 622 27.5 0.892 OK
表1  实验用钢的力学性能
图1  实验用钢的冲击吸收功
图2  实验用钢在不同终轧温度下的OM与SEM像
图3  实验用钢的析出物形貌的TEM像及EDS分析
图4  实验用钢析出物分布的TEM像
图5  实验用钢中位错形貌的STEM像
图6  实验用钢中(Nb, Ti)C在奥氏体中析出的NrT曲线与PTT曲线
Finish Rolling σ0 ΔσS ΔσG ΔσDis ΔσOrowan σy Measured σy
temperature / ℃ MPa MPa MPa MPa MPa MPa MPa
920 48 98 220 85 10 461 464
840 48 98 255 136 14 551 541
表2  不同终轧温度下实验用钢的σy及其分量的计算值
[1] Zhang P C, Wu H B, Tang D, et al.Dissolving behaviors of carbonitrides in Nb-V-Ti and V-Ti microalloying steels[J]. Acta Metall. Sin., 2007, 43: 753(张鹏程, 武会宾, 唐荻等. Nb-V-Ti和V-Ti微合金钢中碳氮化物的回溶行为[J]. 金属学报, 2007, 43: 753)
[2] Speer J G, Michael J R, Hansen S S.Carbonitride precipitation in niobium/vanadium microalloyed steels[J]. Metall. Trans., 1987, 18A: 211
[3] Zheng L X, Li W Y, Zhai D Y.Analysis on fracture of the ingot beam of the heavy-duty dump truck[J]. Metall. Equipm., 2010, (5): 28(郑利霞, 李文颖, 翟大勇. 自卸车元宝梁断裂分析[J]. 冶金设备, 2010, (5): 28)
[4] Wu C L, Ma W R, Wang S, et al. Girder shaped like shoe-shaped gold ingot and vehicle frame assembly with same [P]. China Patents, CN204341193U, 2015(吴辰龙, 马维忍, 王珊等. 一种元宝梁以及具有该元宝梁的车架总成 [P]. 中国专利, CN204341193U, 2015)
[5] Li Y J.Finite element analysis of static-dynamic stress of heavy truck[J]. Autom. Eng., 1989, (1): 35(李玉娟. 超重型汽车车架静动态应力的有限元分析[J]. 汽车工程, 1989, (1): 35)
[6] Zhang Y, Zhang L, Xu Z J, et al.Simulation of heavy vehicle frame based on assembled structures and analysis on the frame fracture[J]. Comput. Simul., 2005, 22(12): 218(张勇, 张力, 徐宗俊等. 基于组合结构的重车车架建模仿真及断裂分析[J]. 计算机仿真, 2005, 22(12): 218)
[7] Yu C W.Finite elements simulation and optimization of heavy-duty truck's frame structure [D]. Changchun: Jilin University, 2005(余传文. 重型载货汽车车架结构的有限元仿真及优化 [D]. 长春: 吉林大学, 2005)
[8] Zou L, Yu H C, Jing J H.Finite element analysis of the frame of 6×4 heavy dump truck[J]. J. Hefei Univ. Technol.(Nat. Sci), 2007, 30(Suppl.): 43(邹琳, 于海昌, 景俊鸿. 6×4重型自卸车车架有限元分析[J]. 合肥工业大学学报(自然科学版), 2007, 30(增刊): 43)
[9] Xu B, Shang L P, Chen X J, et al. Reinforced heavy duty car wing girder [P]. China Patents, CN202911799U, 2013(徐斌, 尚利平, 陈学军等. 一种强化重型汽车元宝梁 [P]. 中国专利, CN202911799U, 2013)
[10] Song W X.Metallography [M]. Beijing: Metallurgical Industry Press, 1980: 1(宋维锡. 金属学[M]. 北京: 冶金工业出版社, 1980: 1)
[11] Wang Y M, Li M Y, Wei G, et al.Controlled Rolling of Steel and Controlled Cooling [M]. Beijing: Metallurgical Industry Press, 1995: 1(王有铭, 李曼云, 韦光等. 钢材的控制轧制和控制冷却 [M]. 北京: 冶金工业出版社, 1995: 1)
[12] Yong Q L, Li Y F, Sun Z B, et al.Second-phase on grain coarsening time and temperature[J]. Iron Steel, 1993, 28(9): 45(雍岐龙, 李永福, 孙珍宝等. 第二相与晶粒粗化时间及粗化温度[J]. 钢铁, 1993, 28(9): 45)
[13] Smith R M, Dunne D P.Structural aspects of alloy carbonitride precipitation in microalloyed steels[J]. Mater. Forum, 1988, 11: 166
[14] Hong S G, Kang K B, Park C G.Strain-induced precipitation of Nb in Nb and Nb-Ti microalloyed HSLA steels[J]. Scr. Mater., 2002, 46: 163
[15] Yi H L, Du L X, Wang G D, et al.New Ti-bearing high strength steel[J]. Chin. J. Mech. Eng., 2008, 44(8): 50(衣海龙, 杜林秀, 王国栋等, 一种新型含钛高强度钢[J], 机械工程学报, 2008, 44(8): 50)
[16] Dutta B, Valdes E, Sellars C M.Mechanism and kinetics of strain induced precipitation of Nb(C, N) in austenite[J]. Acta Metall. Mater., 1992, 40: 653
[17] Poths R M, Higginson R L, Palmiere E J.Complex precipitation behaviour in a microalloyed plate steel[J]. Scr. Mater., 2001, 44: 147
[18] Craven A J, He K, Garvie L A J, et al. Complex heterogeneous precipitation in titanium-niobium microalloyed Al-killed HSLA steels——I. (Ti, Nb)(C, N) particles[J]. Acta Mater., 2000, 48: 3857
[19] Thillou V.Basic metal processing research institute report [R]. Pittsburgh, PA, USA: University of Pittsburgh, 1997
[20] Yong Q L.The Second Phase in Steels [M]. Beijing: Metallurgical Industry Press, 2006: 175(雍岐龙. 钢铁材料中的第二相 [M]. 北京: 冶金工业出版社, 2006: 175)
[21] Yong Q L, Ma M T, Wu B R.Microalloyed steel——Physical and Mechanical Metallurgy [M]. Beijing: China Machine Press, 1989: 57(雍岐龙, 马鸣图, 吴宝榕. 微合金钢——物理和力学冶金 [M]. 北京: 机械工业出版社, 1989: 57)
[22] Wang R Z, Zhang H T.Strengthening mechanism of Nb and Ti complex microalloyed strip steel produced by thin slab casting and direct rolling process[J]. Acta Metall. Sin., 2007, 43: 1082(王瑞珍, 章洪涛. 薄板坯连铸连轧工艺生产的Nb、Ti复合微合金化热轧带钢的强化机制[J]. 金属学报, 2007, 43: 1082)
[23] Pickering F B.Physical Metallurgy and the Design of Steels [M]. London: Applied Science Publishing Ltd., 1978: 63
[24] Ashby M F.Strengthening Methods in Crystals[M]. London: Applied Science Publishers Ltd., 1971: 137
[25] Gladman T, Dulieu D, Mclvor I D.Microalloy' 75[M]. New York: Union Carbide Corporation, 1977: 32
[1] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.
[2] 陈继林, 冯光宏, 马洪磊, 杨栋, 刘维. Cr-Mo微合金冷镦钢的显微组织、力学性能及强化机制[J]. 金属学报, 2022, 58(9): 1189-1198.
[3] 王洪伟, 何竹风, 贾楠. 非均匀组织FeMnCoCr高熵合金的微观结构和力学性能[J]. 金属学报, 2021, 57(5): 632-640.
[4] 刘晨曦, 毛春亮, 崔雷, 周晓胜, 余黎明, 刘永长. 低活化铁素体/马氏体钢组织调控及其固相连接研究进展[J]. 金属学报, 2021, 57(11): 1521-1538.
[5] 覃嘉宇, 李小强, 金培鹏, 王金辉, 朱云鹏. 碳纳米管(CNTs)增强AZ91镁基复合材料组织与力学性能研究[J]. 金属学报, 2019, 55(12): 1537-1543.
[6] 惠亚军,潘辉,李文远,刘锟,陈斌,崔阳. 1000 MPa级Nb-Ti微合金化超高强度钢加热制度研究[J]. 金属学报, 2017, 53(2): 129-139.
[7] 韩克昌,刘一奇,林国强,董闯,邰凯平,姜辛. 宽固溶区过渡金属氮化物MNx (M=Ti, Zr, Hf)硬质薄膜原子尺度强化机制研究*[J]. 金属学报, 2016, 52(12): 1601-1609.
[8] 惠亚军,潘辉,周娜,李瑞恒,李文远,刘锟. 650 MPa级V-N微合金化汽车大梁钢强化机制研究*[J]. 金属学报, 2015, 51(12): 1481-1488.
[9] 骆宗安, 刘纪源, 冯莹莹, 彭文. 超快速连续退火对低Si系Nb-Ti微合金化TRIP钢组织和力学性能的影响*[J]. 金属学报, 2014, 50(5): 515-523.
[10] 李小龙, 郭正洪, 戎咏华, 吴海洋, 姚圣法. 基于屈服平台理论开发的600 MPa级高强塑性螺纹钢的研究*[J]. 金属学报, 2014, 50(4): 439-446.
[11] 黄晓旭. 金属强度的尺寸效应*[J]. 金属学报, 2014, 50(2): 137-140.
[12] 李海, , 王芝秀, 苗芬芬, 方必军, 宋仁国, 郑子樵. 预时效+冷轧变形+再时效对6061铝合金微观组织和力学性能的影响[J]. 金属学报, 2014, 50(10): 1244-1252.
[13] 卓海鸥 唐建成 叶楠. 液相原位反应法制备Cu-Y2O3复合材料[J]. 金属学报, 2012, 48(12): 1474-1478.
[14] 徐祖耀. Spinodal分解始发形成调幅组织的强化机制[J]. 金属学报, 2011, 47(1): 1-6.
[15] 王瑞珍; 章洪涛 . 薄板坯连铸连轧工艺生产的Nb、Ti复合微合金化热轧带钢的强化机制[J]. 金属学报, 2007, 43(10): 1082-1090 .