Please wait a minute...
金属学报  2017, Vol. 53 Issue (10): 1284-1302    DOI: 10.11900/0412.1961.2017.000269
  研究论文 本期目录 | 过刊浏览 |
兼具成骨和抗感染性能的医用金属材料研究进展
林潇1, 葛隽1, 吴水林2, 刘宝华3, 杨惠林1,4, 杨磊1,4()
1苏州大学骨科研究所 苏州 215006
2 湖北大学材料科学与工程学院 武汉 430062
3 深圳大学医学部基础医学院 深圳 518060
4 苏州大学国际骨转化医学联合研究中心 苏州 215006
Advances in Metallic Biomaterials with both Osteogenic and Anti-Infection Properties
Xiao LIN1, Jun GE1, Shuilin WU2, Baohua LIU3, Huilin YANG1,4, Lei YANG1,4()
1 Institute of Orthopaedics, Soochow University, Suzhou 215006, China
2 School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
3 Department of Basic Medical Sciences, School of Medicine, Shenzhen University, Shenzhen 518060, China
4 International Research Center for Translational Orthopaedics (IRCTO), Soochow University, Suzhou 215006, China
引用本文:

林潇, 葛隽, 吴水林, 刘宝华, 杨惠林, 杨磊. 兼具成骨和抗感染性能的医用金属材料研究进展[J]. 金属学报, 2017, 53(10): 1284-1302.
Xiao LIN, Jun GE, Shuilin WU, Baohua LIU, Huilin YANG, Lei YANG. Advances in Metallic Biomaterials with both Osteogenic and Anti-Infection Properties[J]. Acta Metall Sin, 2017, 53(10): 1284-1302.

全文: PDF(4646 KB)   HTML
摘要: 

材料的成骨性能(即材料表面或周围促进新骨生成的性能)一直以来是大部分骨科植入性医疗器械的首要临床要求。近年来,材料的抗感染或者抗菌性能(尤其是不依赖抗生素的抗感染或者抗菌性能)逐渐成为骨科植入物的另一重要临床要求。因此,开发同时具有成骨和抗感染性能的生物材料对于骨科临床具有重要意义。医用金属材料在骨科植入物中占有重要地位,但兼具这2种性能的金属材料在以往的临床实践或基础研究中都极为少见,最近才得以广泛研究。本文综述了同时具有成骨和抗感染性能的新型医用金属材料的研究进展,介绍相关金属材料以及金属材料表面改性的研究成果,并对材料兼具成骨和抗感染的机理进行分析讨论,提出此类新型医用金属材料的研究展望。

关键词 医用金属材料表面改性成骨性能抗感染抗菌    
Abstract

Osteogenic capacity (i.e., properties that promote new bone formation around the implant) has long been a clinical requirement for most orthopedic implants. Recently, anti-infection or antibacterial property has increasingly become critical for orthopedic implants (especially without the use of antibiotics). Orthopedic implant materials with simultaneous osteogenic and anti-infection capacities are extremely promising for orthopedic applications, but such materials are not widely available to date and have only recently been researched. In this review article, the advances in metallic biomaterials with both osteogenic and anti-infection capacities were introduced considering of the wide application of metallic biomaterials in orthopedics. Firstly, numerous attractive metal formulations that exhibit both osteogenic and anti-infection capacities as well as surface modification strategies that enhance such capacities are introduced. Secondly, several possible mechanisms underlying the osteogenic and anti-infection properties are discussed. Finally, an outlook of this field is proposed.

Key wordsmetallic biomaterial    surface modification    osteogenic    anti-infection    antibacterial
收稿日期: 2017-07-04     
ZTFLH:  R318.08  
基金资助:资助项目 国家自然科学基金项目Nos.81501858、51672184和81622032,江苏省“双创团队”和“双创人才”项目No.BY2014159-07,江苏省高校优势学科建设工程项目(PAPD)
作者简介:

作者简介 林 潇,男,1987年生,讲师,博士

Material
Composition
Toxicity
Biodegradability Mechanical properties
Hardness
HV
Test
mode
E
GPa
YS
MPa
US
MPa
EL
%
Ti-Cu alloy[8,9] Ti-5%Cu
(mass fraction)
N N 369.5 C 1247.0 1707.9 15
Ti-Nb-Ag alloy[10] Ti26Nb5Ag
(atom fraction / %)
NA N 514 C 1240.5 5.4
Ti-Ag as cast[11,12] Ti-20Ag NA N 250 T 400 550 19
SUS 304-Cu SS[13]
304SS containing 1.5%~5.5% Cu
(mass fraction)
NA
N
240~270
T
570~625
Co-Cr-Mo-Cu[14]
Co-Cr-Mo with 1%~4% Cu
(mass fraction)
NA
N
274~298
T
310~440
447~620
10.7~18.5
Pure Mg
as cast[15,16]
99.9%Mg
(mass fraction)
Negligible Y 26 T 45 49 93 3
Mg-Ag alloy[17] Mg-2%Ag
(mass fraction)
Negligible Y 40.1 C 44 225
Mg-Cu alloy
as cast[18]
Mg-0.03%Cu
(mass fraction)
N Y 32 T 80
Mg-Nd-Zn-Zr alloy[19-21] Mg-3.130Nd-
0.164Zn-0.413Zr
Negligible Y T About 333 About 334 About 21
Zn extruded[22] 99.99%Zn
(mass fraction)
NA Y 25 T 130 About 180 55
Zn-1Mg alloy[22] Zn-0.95%Mg
(mass fraction)
N Y 70 T 180 250 11
Cortical bone[23] T
C
8~12 50~130
130~190
表1  兼具成骨和抗感染性能的医用金属材料[8-23]
图1  几种具有成骨和抗感染性能的医用金属材料的微观组织[12,17,18]
图2  Mg-Cu系列合金的成骨和抗感染性能[18]
图3  通过表面改性获得成骨和抗感染性能的典型金属的微观结构[61,66,72,77]
图4  Cu/Zn共掺杂的HA涂层截面和表面形貌[96]
Agent Antibacterial mechanism Biological benefit
Ag Disrupting functions of bacteria to form a nonculturable state[139-141] Not clear
Cu
Generation of reactive oxygen species[142];
Formation of cavities in the bacterial cell wall[143]
Preventing osteoporosis[144,145];
Promoting osteogenic differentiation[146];
Inducing vascularization[147-149]
Zn

Generation of reactive oxygen species[150];
Excessive uptake of Zn ions[151];
Inhibition of bacterial activities[152]
Synthesis and stabilization of proteins[153];
Constituent of antioxidant system[154];
Anti-inflammatory effect[113];
Bone formation and vascularization[113,155,156]
Chi
Chi/bacteria electrostatic interactions resulting in growth inhibition[157] and causing the leakage of intracellular constituents[158] Promoting growth and mineral rich matrix deposition of osteoblasts[159];
Accelerating osteogenic differentiation[122,123]
AP Disrupting the integrity of microbial membranes and subsequent cell lysis[160,161] Angiogenesis, modulation of cytokine/chemokine expression, wound healing[162,163]
表2  常见抗菌医用材料的抗菌机理及生物学功能[113,122,123,139-163]
[1] Kurtz S M, Ong K L, Schmier J, et al.Future clinical and economic impact of revision total hip and knee arthroplasty[J]. J. Bone. Joint. Surg., 2010, 89(Suppl.3): 144
[2] Deysine M.Infections associated with surgical implants[J]. N. Engl. J. Med., 2004, 351: 193
[3] Zimmerli W.Prosthetic-joint-associated infections[J]. Best. Pract. Res. Clin. Rheumatol., 2006, 20: 1045
[4] Grainger D W, Van Der Mei H C, Jutte P C, et al. Critical factors in the translation of improved antimicrobial strategies for medical implants and devices[J]. Biomaterials, 2013, 34: 9237
[5] Wiedel J D.Salvage of infected total knee fusion: The last option[J]. Clin. Orthop. Relat. Res., 2002, (404): 139
[6] Campoccia D, Montanaro L, Arciola C R.The significance of infection related to orthopedic devices and issues of antibiotic resistance[J]. Biomaterials, 2006, 27: 2331
[7] Neoh K G, Hu X F, Zheng D, et al.Balancing osteoblast functions and bacterial adhesion on functionalized titanium surfaces[J]. Biomaterials, 2012, 33: 2813
[8] Zhang E L, Li F B, Wang H Y, et al.A new antibacterial titanium-copper sintered alloy: Preparation and antibacterial property[J]. Mater. Sci. Eng., 2013, C33: 4280
[9] Liu J, Li F B, Liu C, et al.Effect of Cu content on the antibacterial activity of titanium-copper sintered alloys[J]. Mater. Sci. Eng., 2014, C35: 392
[10] Wen M, Wen C E, Hodgson P, et al.Fabrication of Ti-Nb-Ag alloy via powder metallurgy for biomedical applications[J]. Mater. Des., 2014, 56: 629
[11] Nakajo K, Takahashi M, Kikuchi M, et al.Inhibitory effect of Ti-Ag alloy on artificial biofilm formation[J]. Dent. Mater. J., 2014, 33: 389
[12] Takahashi M, Kikuchi M, Takada Y, et al.Mechanical properties and microstructures of dental cast Ti-Ag and Ti-Cu alloys[J]. Dent. Mater. J., 2002, 21: 270
[13] Hong I T, Koo C H.Antibacterial properties, corrosion resistance and mechanical properties of Cu-modified SUS 304 stainless steel[J]. Mater. Sci. Eng., 2005, A393: 213
[14] Zhang E L, Liu C.A new antibacterial Co-Cr-Mo-Cu alloy: Preparation, biocorrosion, mechanical and antibacterial property[J]. Mater. Sci. Eng., 2016, C69: 134
[15] Vojtěch D, Kubásek J, ?erák J, et al.Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation[J]. Acta. Biomater., 2011, 7: 3515
[16] Robinson D A, Griffith R W, Dan S, et al.In vitro antibacterial properties of magnesium metal against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus[J]. Acta. Biomater., 2010, 6: 1869
[17] Tie D, Feyerabend F, Müller W D, et al.Antibacterial biodegradable Mg-Ag alloys[J]. Eur. Cell. Mater., 2013, 25: 284
[18] Liu C, Fu X K, Pan H B, et al.Biodegradable Mg-Cu alloys with enhanced osteogenesis, angiogenesis, and long-lasting antibacterial effects[J]. Sci. Rep., 2016, 6: 27374
[19] Zhang X B, Yuan G Y, Mao L, et al.Effects of extrusion and heat treatment on the mechanical properties and biocorrosion behaviors of a Mg-Nd-Zn-Zr alloy[J]. J. Mech. Behav. Biomed. Mater., 2012, 7: 77
[20] Zhang X B, Yuan G Y, Niu J L, et al.Microstructure, mechanical properties, biocorrosion behavior, and cytotoxicity of as-extruded Mg-Nd-Zn-Zr alloy with different extrusion ratios[J]. J. Mech. Behav. Biomed. Mater., 2012, 9: 153
[21] Qin H, Zhao Y C, An Z Q, et al.Enhanced antibacterial properties, biocompatibility, and corrosion resistance of degradable Mg-Nd-Zn-Zr alloy[J]. Biomaterials, 2015, 53: 211
[22] Gong H B, Wang K, Strich R, et al.In vitro biodegradation behavior, mechanical properties, and cytotoxicity of biodegradable Zn-Mg alloy[J]. J. Biomed. Mater. Res., 2015, 103: 1632
[23] Bal B S, Rahaman M N.Orthopedic applications of silicon nitride ceramics[J]. Acta. Biomater., 2012, 8: 2889
[24] Tahal D, Madhavan K, Chieng L O, et al.Metals in spine[J]. World. Neurosurg., 2017, 100: 619
[25] Soultanis K C, Pyrovolou N, Zahos K A, et al.Late postoperative infection following spinal instrumentation: Stainless steel versus titanium implants[J]. J. Surg. Orthop. Adv., 2008, 17: 193
[26] Ren L, Yang K, Guo L, et al.Preliminary study of anti-infective function of a copper-bearing stainless steel[J]. Mater. Sci. Eng., 2012, C32: 1204
[27] Chai H W, Guo L, Wang X T, et al.Antibacterial effect of 317L stainless steel contained copper in prevention of implant-related infection in vitro and in vivo[J]. J. Mater. Sci. Mater. Med., 2011, 22: 2525
[28] Ren L, Wong H M, Yan C H, et al.Osteogenic ability of Cu-bearing stainless steel[J]. J. Biomed. Mater. Res., 2015, 103B: 1433
[29] Nagels J, Stokdijk M, Rozing P M.Stress shielding and bone resorption in shoulder arthroplasty[J]. J. Shoulder. Elb. Surg., 2003, 12: 35
[30] Kang M K, Moon S K, Kwon J S, et al.Antibacterial effect of sand blasted, large-grit, acid-etched treated Ti-Ag alloys[J]. Mater. Res. Bull., 2012, 47: 2952
[31] Shirai T, Tsuchiya H, Shimizu T, et al.Prevention of pin tract infection with titanium-copper alloys[J]. J. Biomed. Mater. Res., 2010, 91B: 373
[32] Zhang E L, Zheng L L, Liu J, et al.Influence of Cu content on the cell biocompatibility of Ti-Cu sintered alloys[J]. Mater. Sci. Eng., 2015, C46: 148
[33] Liu R, Memarzadeh K, Chang B, et al.Antibacterial effect of copper-bearing titanium alloy (Ti-Cu) against Streptococcus mutans and Porphyromonas gingivalis[J]. Sci. Rep., 2016, 6: 29985
[34] Ren L, Ma Z, Li M, et al.Antibacterial properties of Ti-6Al-4V-xCu alloys[J]. J. Mater. Sci. Technol., 2014, 30: 699
[35] Naji A, Harmand M.Study of the effect of the surface state on the cytocompatibility of a Co-Cr alloy using human osteoblasts and fibroblasts[J]. J. Biomed. Mater. Res., 1990, 24: 861
[36] Chen Q Z, Thouas G A.Metallic implant biomaterials[J]. Mater. Sci. Eng., 2015, R87: 1
[37] Marti A.Cobalt-base alloys used in bone surgery[J]. Injury, 2000, 31(Suppl.4): D18
[38] Wang S, Yang C G, Ren L, et al.Study on antibacterial performance of Cu-bearing cobalt-based alloy[J]. Mater. Lett., 2014, 129: 88
[39] Ren L, Memarzadeh K, Zhang S Y, et al.A novel coping metal material CoCrCu alloy fabricated by selective laser melting with antimicrobial and antibiofilm properties[J]. Mater. Sci. Eng., 2016, C67: 461
[40] Liu Y H, Padmanabhan J, Cheung B, et al.Combinatorial development of antibacterial Zr-Cu-Al-Ag thin film metallic glasses[J]. Sci. Rep., 2016, 6: 26950
[41] Windhagen H, Radtke K, Weizbauer A, et al.Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: Short term results of the first prospective, randomized, controlled clinical pilot study[J]. Biomed. Eng. Online, 2013, 12: 62
[42] Zhang Q, Lin X, Qi Z R, et al.Magnesium alloy for repair of lateral tibial plateau defect in minipig model[J]. J. Mater. Sci. Technol., 2013, 29: 539
[43] Witte F, Kaese V, Haferkamp H, et al.In vivo corrosion of four magnesium alloys and the associated bone response[J]. Biomaterials, 2005, 26: 3557
[44] Lin X, Tan L L, Wang Q, et al.In vivo degradation and tissue compatibility of ZK60 magnesium alloy with micro-arc oxidation coating in a transcortical model[J]. Mater. Sci. Eng., 2013, C33: 3881
[45] Lin X, Yang X M, Tan L L, et al.In vitro degradation and biocompatibility of a strontium-containing micro-arc oxidation coating on the biodegradable ZK60 magnesium alloy[J]. Appl. Surf. Sci., 2014, 288: 718
[46] Li Y, Liu G W, Zhai Z J, et al.Antibacterial properties of magnesium in vitro and in an in vivo model of implant-associated methicillin-resistant Staphylococcus aureus infection[J]. Antimicrob. Agents. Chemother., 2014, 58: 7586
[47] Rahim M I, Eifler R, Rais B, et al.Alkalization is responsible for antibacterial effects of corroding magnesium[J]. J. Biomed. Mater. Res., 2015, 103A: 3526
[48] Feng H Q, Wang G M, Jin W H, et al.Systematic study of inherent antibacterial properties of magnesium-based biomaterials[J]. ACS. Appl. Mater. Interfaces, 2016, 8: 9662
[49] J?hn K, Saito H, Taipaleenm?ki H, et al.Intramedullary Mg2Ag nails augment callus formation during fracture healing in mice[J]. Acta Biomater., 2016, 36: 350
[50] Li Y, Liu L N, Wan P, et al.Biodegradable Mg-Cu alloy implants with antibacterial activity for the treatment of osteomyelitis: In vitro and in vivo evaluations[J]. Biomaterials, 2016, 106: 250
[51] He G P, Wu Y H, Zhang Y, et al.Addition of Zn to the ternary Mg-Ca-Sr alloys significantly improves their antibacterial properties[J]. J. Mater. Chem., 2015, 3: 6676
[52] Lock J Y, Wyatt E, Upadhyayula S, et al.Degradation and antibacterial properties of magnesium alloys in artificial urine for potential resorbable ureteral stent applications[J]. J. Biomed. Mater. Res., 2014, 102A: 781
[53] Qin H, Cao H L, Zhao Y C, et al.In vitro and in vivo anti-biofilm effects of silver nanoparticles immobilized on titanium[J]. Biomaterials, 2014, 35: 9114
[54] Jin G D, Cao H L, Qiao Y Q, et al.Osteogenic activity and antibacterial effect of zinc ion implanted titanium[J]. Colloids. Surf., 2014, 117B: 158
[55] Jin G D, Qin H, Cao H L, et al.Synergistic effects of dual Zn/Ag ion implantation in osteogenic activity and antibacterial ability of titanium[J]. Biomaterials, 2014, 35: 7699
[56] Fiedler J, Kolitsch A, Kleffner B, et al.Copper and silver ion implantation of aluminium oxide-blasted titanium surfaces: Proliferative response of osteoblasts and antibacterial effects[J]. Int. J. Artif. Organs., 2011, 34: 882
[57] Dan Z G, Ni H W, Xu B F, et al.Microstructure and antibacterial properties of AISI 420 stainless steel implanted by copper ions[J]. Thin Solid Films, 2005, 492: 93
[58] Necula B S, Fratila-Apachitei L E, Zaat S A J, et al. In vitro antibacterial activity of porous TiO2-Ag composite layers against methicillin-resistant Staphylococcus aureus[J]. Acta. Biomater., 2009, 5: 3573
[59] Necula B S, Van Leeuwen J P T M, Fratila-Apachitei L E, et al. In vitro cytotoxicity evaluation of porous TiO2-Ag antibacterial coatings for human fetal osteoblasts[J]. Acta Biomater., 2012, 8: 4191
[60] Zhao L Z, Wang H R, Huo K F, et al.Antibacterial nano-structured titania coating incorporated with silver nanoparticles[J]. Biomaterials, 2011, 32: 5706
[61] Das K, Bose S, Bandyopadhyay A, et al.Surface coatings for improvement of bone cell materials and antimicrobial activities of Ti implants[J]. J. Biomed. Mater. Res., 2008, 87B: 455
[62] Uhm S H, Song D H, Kwon J S, et al.Tailoring of antibacterial Ag nanostructures on TiO2 nanotube layers by magnetron sputtering[J]. J. Biomed. Mater. Res., 2014, 102B: 592
[63] Hu H, Zhang W, Qiao Y C, et al.Antibacterial activity and increased bone marrow stem cell functions of Zn-incorporated TiO2 coatings on titanium[J]. Acta. Biomater., 2012, 8: 904
[64] Li Y, Xiong W, Zhang C, et al.Enhanced osseointegration and antibacterial action of zinc-loaded titania-nanotube-coated titanium substrates: In vitro and in vivo studies[J]. J. Biomed. Mater. Res., 2014, 102A: 3939
[65] Tian Y X, Cao H L, Qiao Y Q, et al.Antibacterial activity and cytocompatibility of titanium oxide coating modified by iron ion implantation[J]. Acta. Biomater., 2014, 10: 4505
[66] Wu Q J, Li J H, Zhang W J, et al.Antibacterial property, angiogenic and osteogenic activity of Cu-incorporated TiO2 coating[J]. J. Mater. Chem., 2014, 2B: 6738
[67] Hang R Q, Gao A, Huang X B, et al.Antibacterial activity and cytocompatibility of Cu-Ti-O nanotubes[J]. J. Biomed. Mater. Res., 2014, 102A: 1850
[68] Chen W, Oh S, Ong A P, et al.Antibacterial and osteogenic properties of silver-containing hydroxyapatite coatings produced using a sol gel process[J]. J. Biomed. Mater. Res., 2007, 82A: 899
[69] Song W H, Ryu H S, Hong S H.Antibacterial properties of Ag (or Pt)-containing calcium phosphate coatings formed by micro-arc oxidation[J]. J. Biomed. Mater. Res., 2009, 88A: 246
[70] Huang Y, Zhang X J, Zhao R L, et al.Antibacterial efficacy, corrosion resistance, and cytotoxicity studies of copper-substituted carbonated hydroxyapatite coating on titanium substrate[J]. J. Mater. Sci., 2015, 50: 1688
[71] Fielding G A, Roy M, Bandyopadhyay A, et al.Antibacterial and biological characteristics of silver containing and strontium doped plasma sprayed hydroxyapatite coatings[J]. Acta. Biomater., 2012, 8: 3144
[72] Ge X, Leng Y, Bao C Y, et al.Antibacterial coatings of fluoridated hydroxyapatite for percutaneous implants[J]. J. Biomed. Mater. Res., 2010, 95A: 588
[73] Pishbin F, Mouri?o V, Gilchrist J B, et al.Single-step electrochemical deposition of antimicrobial orthopaedic coatings based on a bioactive glass/chitosan/nano-silver composite system[J]. Acta Biomater., 2013, 9: 7469
[74] Li K, Xie Y T, Huang L P, et al.Antibacterial mechanism of plasma sprayed Ca2ZnSi2O7 coating against Escherichia coli[J]. J. Mater. Sci. Mater. Med., 2013, 24: 171
[75] Li K, Yu J M, Xie Y T, et al.Chemical stability and antimicrobial activity of plasma sprayed bioactive Ca2ZnSi2O7 coating[J]. J. Mater. Sci. Mater. Med., 2011, 22: 2781
[76] Li B E, Liu X Y, Cao C, et al.Preparation and antibacterial effect of plasma sprayed wollastonite coatings loading silver[J]. Appl. Surf. Sci., 2008, 255: 452
[77] Kalaivani S, Singh R K, Ganesan V, et al.Effect of copper (Cu2+) inclusion on the bioactivity and antibacterial behavior of calcium silicate coatings on titanium metal[J]. J. Mater. Chem., 2014, 2B: 846
[78] Zhao Y, Jamesh M I, Li W K, et al.Enhanced antimicrobial properties, cytocompatibility, and corrosion resistance of plasma-modified biodegradable magnesium alloys[J]. Acta Biomater., 2014, 10: 544
[79] Huang H L, Chang Y Y, Chen Y C, et al.Cytocompatibility and antibacterial properties of zirconia coatings with different silver contents on titanium[J]. Thin Solid Films, 2013, 549: 108
[80] Chua P H, Neoh K G, Kang E T, et al.Surface functionalization of titanium with hyaluronic acid/chitosan polyelectrolyte multilayers and RGD for promoting osteoblast functions and inhibiting bacterial adhesion[J]. Biomaterials, 2008, 29: 1412
[81] Zhao L, Hu Y, Xu D W, et al.Surface functionalization of titanium substrates with chitosan-lauric acid conjugate to enhance osteoblasts functions and inhibit bacteria adhesion[J]. Colloids. Surf. Biointerf., 2014, 119B: 115
[82] Song L, Gan L, Xiao Y F, et al.Antibacterial hydroxyapatite/chitosan complex coatings with superior osteoblastic cell response[J]. Mater. Lett., 2011, 65: 974
[83] Kazemzadeh-Narbat M, Kindrachuk J, Duan K, et al.Antimicrobial peptides on calcium phosphate-coated titanium for the prevention of implant-associated infections[J]. Biomaterials, 2010, 31: 9519
[84] Xiong J, Xu B F, Ni H W.Antibacterial and corrosive properties of copper implanted austenitic stainless steel[J]. Int. J. Min. Met. Mater., 2009, 16: 293
[85] Wan Y Z, Raman S, He F, et al.Surface modification of medical metals by ion implantation of silver and copper[J]. Vacuum, 2007, 81: 1114
[86] Tan A W, Pingguan-Murphy B, Ahmad R, et al.Review of titania nanotubes: Fabrication and cellular response[J]. Ceram. Int., 2012, 38: 4421
[87] Geetha M, Singh A K, Asokamani R, et al.Ti based biomaterials, the ultimate choice for orthopaedic implants—A review[J]. Prog. Mater. Sci., 2009, 54: 397
[88] Wu P G, Xie R C, Imlay K, et al.Visible-light-induced bactericidal activity of titanium dioxide codoped with nitrogen and silver[J]. Environ. Sci. Technol., 2010, 44: 6992
[89] Stani? V, Dimitrijevi? S, Anti?-Stankovi? J, et al.Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders[J]. Appl. Surf. Sci., 2010, 256: 6083
[90] Stani? V, Jana?kovi? D, Dimitrijevi? S, et al.Synthesis of antimicrobial monophase silver-doped hydroxyapatite nanopowders for bone tissue engineering[J]. Appl. Surf. Sci., 2011, 257: 4510
[91] Kim T N, Feng Q L, Kim J O, et al.Antimicrobial effects of metal ions (Ag+, Cu2+, Zn2+) in hydroxyapatite[J]. J. Mater. Sci. Mater. Med., 1998, 9: 129
[92] Chung R J, Hsieh M F, Huang K C, et al.Anti-microbial hydroxyapatite particles synthesized by a sol-gel route[J]. J. Sol. Gel. Sci. Technol., 2005, 33: 229
[93] Matsumoto N, Sato K, Yoshida K, et al.Preparation and characterization of β-tricalcium phosphate co-doped with monovalent and divalent antibacterial metal ions[J]. Acta Biomater., 2009, 5: 3157
[94] Singh R K, Kannan S.Synthesis, structural analysis, mechanical, antibacterial and Hemolytic activity of Mg2+ and Cu2+ co-substitutions in β-Ca3(PO4)2[J]. Mater. Sci. Eng., 2014, C45: 530
[95] Chung R J, Hsieh M F, Huang C W, et al.Antimicrobial effects and human gingival biocompatibility of hydroxyapatite sol-gel coatings[J]. J. Biomed. Mater. Res., 2006, 76B: 169
[96] Huang Y, Zhang X J, Mao H H, et al.Osteoblastic cell responses and antibacterial efficacy of Cu/Zn co-substituted hydroxyapatite coatings on pure titanium using electrodeposition method[J]. RSC Adv., 2015, 5: 17076
[97] Xie C M, Lu X, Wang K F, et al.Silver nanoparticles and growth factors incorporated hydroxyapatite coatings on metallic implant surfaces for enhancement of osteoinductivity and antibacterial properties[J]. ACS. Appl. Mater. Interfaces, 2014, 6: 8580
[98] Cheng K, Weng W J, Wang H M, et al.In vitro behavior of osteoblast-like cells on fluoridated hydroxyapatite coatings[J]. Biomaterials, 2005, 26: 6288
[99] Li J N, Song Y, Zhang S X, et al.In vitro responses of human bone marrow stromal cells to a fluoridated hydroxyapatite coated biodegradable Mg-Zn alloy[J]. Biomaterials, 2010, 31: 5782
[100] Wiegand A, Buchalla W, Attin T.Review on fluoride-releasing restorative materials—fluoride release and uptake characteristics, antibacterial activity and influence on caries formation[J]. Dent. Mater., 2007, 23: 343
[101] Hench L L.The story of Bioglass?[J]. J. Mater. Sci. Mater. Med., 2006, 17: 967
[102] Zhang D, Lepp?ranta O, Munukka E, et al.Antibacterial effects and dissolution behavior of six bioactive glasses[J]. J. Biomed. Mater. Res., 2010, 93A: 475
[103] Bellantone M, Coleman N J, Hench L L.Bacteriostatic action of a novel four-component bioactive glass[J]. J. Biomed. Mater. Res., 2000, 51A: 484
[104] Bellantone M, Williams H D, Hench L L.Broad-spectrum bactericidal activity of Ag2O-doped bioactive glass[J]. Antimicrob. Agents. Chemother., 2002, 46: 1940
[105] Catauro M, Raucci M G, De Gaetano F, et al.Antibacterial and bioactive silver-containing Na2O CaO 2SiO2 glass prepared by sol-gel method[J]. J. Mater. Sci. Mater. Med., 2004, 15: 831
[106] Wu C T, Zhou Y H, Xu M C, et al.Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity[J]. Biomaterials, 2013, 34: 422
[107] Neel E A A, Ahmed I, Pratten J, et al. Characterisation of antibacterial copper releasing degradable phosphate glass fibres[J]. Biomaterials, 2005, 26: 2247
[108] Palza H, Escobar B, Bejarano J, et al.Designing antimicrobial bioactive glass materials with embedded metal ions synthesized by the sol-gel method[J]. Mater. Sci. Eng., 2013, C33: 3795
[109] Sánchez-Salcedo S, Shruti S, Salinas A J, et al.In vitro antibacterial capacity and cytocompatibility of SiO2-CaO-P2O5 meso-macroporous glass scaffolds enriched with ZnO[J]. J. Mater. Chem., 2014, 2B: 4836
[110] Lopez-Esteban S, Saiz E, Fujino S, et al.Bioactive glass coatings for orthopedic metallic implants[J]. J. Eur. Ceram. Soc., 2003, 23: 2921
[111] Fathi M H, Doostmohammadi A.Bioactive glass nanopowder and bioglass coating for biocompatibility improvement of metallic implant[J]. J. Mater. Process. Technol., 2009, 209: 1385
[112] Aina V, Perardi A, Bergandi L, et al.Cytotoxicity of zinc-containing bioactive glasses in contact with human osteoblasts[J]. Chem. Biol. Interact., 2007, 167: 207
[113] Hoppe A, Güldal N S, Boccaccini A R.A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics[J]. Biomaterials, 2011, 32: 2757
[114] Zhai W Y, Lu H X, Chen L, et al.Silicate bioceramics induce angiogenesis during bone regeneration[J]. Acta Biomater., 2012, 8: 341
[115] Li H Y, Xue K, Kong N, et al.Silicate bioceramics enhanced vascularization and osteogenesis through stimulating interactions between endothelia cells and bone marrow stromal cells[J]. Biomaterials, 2014, 35: 3803
[116] Yu J M, Li K, Zheng X B, et al.In vitro and in vivo evaluation of zinc-modified Ca-Si-based ceramic coating for bone implants[J]. PLoS One, 2013, 8(3): e57564
[117] Hempel U, Hefti T, Kalbacova M, et al.Response of osteoblast-like SAOS-2 cells to zirconia ceramics with different surface topographies[J]. Clin. Oral. Implants. Res., 2010, 21: 174
[118] Stadlinger B, Hennig M, Eckelt U, et al.Comparison of zirconia and titanium implants after a short healing period. A pilot study in minipigs[J]. Int. J. Oral. Maxillofac. Surg., 2010, 39: 585
[119] Scarano A, Piattelli M, Caputi S, et al.Bacterial adhesion on commercially pure titanium and zirconium oxide disks: An in vivo human study[J]. J. Periodontol., 2004, 75: 292
[120] Al-Radha A S D, Dymock D, Younes C, et al. Surface properties of titanium and zirconia dental implant materials and their effect on bacterial adhesion[J]. J. Dent., 2012, 40: 146
[121] Cortizo M C, Oberti T G, Cortizo M S, et al.Chlorhexidine delivery system from titanium/polybenzyl acrylate coating: Evaluation of cytotoxicity and early bacterial adhesion[J]. J. Dent., 2012, 40: 329
[122] Yang X C, Chen X N, Wang H J.Acceleration of osteogenic differentiation of preosteoblastic cells by chitosan containing nanofibrous scaffolds[J]. Biomacromolecules, 2009, 10: 2772
[123] Costa-Pinto A R, Correlo V M, Sol P C, et al. Osteogenic differentiation of human bone marrow mesenchymal stem cells seeded on melt based chitosan scaffolds for bone tissue engineering applications[J]. Biomacromolecules, 2009, 10: 2067
[124] Liu X F, Guan Y L, Yang D Z, et al.Antibacterial action of chitosan and carboxymethylated chitosan[J]. J. Appl. Polym. Sci., 2001, 79: 1324
[125] No H K, Park N Y, Lee S H, et al.Antibacterial activity of chitosans and chitosan oligomers with different molecular weights[J]. Int. J. Food Microbiol., 2002, 74: 65
[126] Tan H L, Ma R, Lin C C, et al.Quaternized chitosan as an antimicrobial agent: Antimicrobial activity, mechanism of action and biomedical applications in orthopedics[J]. Int. J. Mol. Sci., 2013, 14: 1854
[127] Song L, Xiao Y F, Gan L, et al.The effect of antibacterial ingredients and coating microstructure on the antibacterial properties of plasma sprayed hydroxyapatite coatings[J]. Surf. Coat. Technol., 2012, 206: 2986
[128] Liu Y, Zheng Z, Zara J N, et al.The antimicrobial and osteoinductive properties of silver nanoparticle/poly (DL-lactic-co-glycolic acid)-coated stainless steel[J]. Biomaterials, 2012, 33: 8745
[129] Zhang X M, Li Z Y, Yuan X B, et al.Cytotoxicity and antibacterial property of titanium alloy coated with silver nanoparticle-containing polyelectrolyte multilayer[J]. Mater. Sci. Eng., 2013, C33: 2816
[130] Xu D W, Yang W H, Hu Y, et al.Surface functionalization of titanium substrates with cecropin B to improve their cytocompatibility and reduce inflammation responses[J]. Colloids. Surf. Biointerf., 2013, 110B: 225
[131] Schaer T P, Stewart S, Hsu B B, et al.Hydrophobic polycationic coatings that inhibit biofilms and support bone healing during infection[J]. Biomaterials, 2012, 33: 1245
[132] Zhang F, Zhang Z B, Zhu X L, et al.Silk-functionalized titanium surfaces for enhancing osteoblast functions and reducing bacterial adhesion[J]. Biomaterials, 2008, 29: 4751
[133] Alcheikh A, Pavon-Djavid G, Helary G, et al.PolyNaSS grafting on titanium surfaces enhances osteoblast differentiation and inhibits Staphylococcus aureus adhesion[J]. J. Mater. Sci. Mater. Med., 2013, 24: 1745
[134] Sutha S, Dhineshbabu N R, Prabhu M, et al.Mg-doped hydroxyapatite/chitosan composite coated 316L stainless steel implants for biomedical applications[J]. J. Nanosci. Nanotechnol., 2015, 15: 4178
[135] Kazemzadeh-Narbat M, Noordin S, Masri B A, et al.Drug release and bone growth studies of antimicrobial peptide-loaded calcium phosphate coating on titanium[J]. J. Biomed. Mater. Res., 2012, 100B: 1344
[136] Erakovi? S, Jankovi? A, Mati? I Z, et al.Investigation of silver impact on hydroxyapatite/lignin coatings electrodeposited on titanium[J]. Mater. Chem. Phys., 2013, 142: 521
[137] Erakovic? S, Jankovic? A, Veljovic? D, et al. Corrosion stability and bioactivity in simulated body fluid of silver/hydroxyapatite and silver/hydroxyapatite/lignin coatings on titanium obtained by electrophoretic deposition[J]. J. Phys. Chem., 2012, 117B: 1633
[138] Erakovi? S, Veljovi? D, Diouf P N, et al.The effect of lignin on the structure and characteristics of composite coatings electrodeposited on titanium[J]. Prog. Org. Coat., 2012, 75: 275
[139] Feng Q L, Wu J, Chen G Q, et al.A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus[J]. J. Biomed. Mater. Res., 2000, 52: 662
[140] Gordon O, Slenters T V, Brunetto P S, et al.Silver coordination polymers for prevention of implant infection: Thiol interaction, impact on respiratory chain enzymes, and hydroxyl radical induction[J]. Antimicrob. Agents. Chemother., 2010, 54: 4208
[141] Jung W K, Koo H C, Kim K W, et al.Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli[J]. Appl. Environ. Microbiol., 2008, 74: 2171
[142] Grass G, Rensing C, Solioz M.Metallic copper as an antimicrobial surface[J]. Appl. Environ. Microbiol., 2011, 77: 1541
[143] Raffi M, Mehrwan S, Bhatti T M, et al.Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli[J]. Ann. Microbiol., 2010, 60: 75
[144] Rico H, Roca-Botran C, Hernandez E R, et al.The effect of supplemental copper on osteopenia induced by ovariectomy in rats[J]. Menopause, 2000, 7: 413
[145] Yee C D, Kubena K S, Walker M, et al.The relationship of nutritional copper to the development of postmenopausal osteoporosis in rats[J]. Biol. Trace. Elem. Res., 1995, 48: 1
[146] Rodríguez J P, Rios S, González M.Modulation of the proliferation and differentiation of human mesenchymal stem cells by copper[J]. J. Cell. Biochem., 2002, 85: 92
[147] Hu G F.Copper stimulates proliferation of human endothelial cells under culture[J]. J. Cell. Biochem., 1998, 69: 326
[148] Sen C K, Khanna S, Venojarvi M, et al.Copper-induced vascular endothelial growth factor expression and wound healing[J]. Am. J. Physiol. Heart. Circ. Physiol., 2002, 282: H1821
[149] De Lima M, McMannis J, Gee A, et al. Transplantation of ex vivo expanded cord blood cells using the copper chelator tetraethylenepentamine: A phase I/II clinical trial[J]. Bone. Marrow. Transpl., 2008, 41: 771
[150] Raghupathi K R, Koodali R T, Manna A C.Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles[J]. Langmuir, 2011, 27: 4020
[151] Boyd D, Li H, Tanner D A, et al.The antibacterial effects of zinc ion migration from zinc-based glass polyalkenoate cements[J]. J. Mater. Sci. Mater. Med., 2006, 17: 489
[152] Phan T N, Buckner T, Sheng J, et al.Physiologic actions of zinc related to inhibition of acid and alkali production by oral streptococci in suspensions and biofilms[J]. Mol. Oral. Microbiol., 2004, 19: 31
[153] Tapiero H, Tew K D.Trace elements in human physiology and pathology: Zinc and metallothioneins[J]. Biomed. Pharmacother., 2003, 57: 399
[154] Prasad A S, Bao B, Beck F W J, et al. Antioxidant effect of zinc in humans[J]. Free Radical. Biol. Med., 2004, 37: 1182
[155] Yamaguchi M.Role of zinc in bone formation and bone resorption[J]. J. Trace. Elem. Exp. Med., 1998, 11: 119
[156] Kwun I S, Cho Y E, Lomeda R A R, et al. Zinc deficiency suppresses matrix mineralization and retards osteogenesis transiently with catch-up possibly through Runx 2 modulation[J]. Bone, 2010, 46: 732
[157] Kumar M N V R. A review of chitin and chitosan applications[J]. React. Funct. Polym., 2000, 46: 1
[158] Rabea E I, Badawy M E T, Stevens C V, et al. Chitosan as antimicrobial agent: Applications and mode of action[J]. Biomacromolecules, 2003, 4: 1457
[159] Seol Y J, Lee J Y, Park Y J, et al.Chitosan sponges as tissue engineering scaffolds for bone formation[J]. Biotechnol. Lett., 2004, 26: 1037
[160] Salditt T, Li C C, Spaar A.Structure of antimicrobial peptides and lipid membranes probed by interface-sensitive X-ray scattering[J]. Biochim. Biophys. Acta Biomembr., 2006, 1758: 1483
[161] Chan D I, Prenner E J, Vogel H J.Tryptophan-and arginine-rich antimicrobial peptides: Structures and mechanisms of action[J]. Biochim. Biophys. Acta Biomembr., 2006, 1758: 1184
[162] Hale J D F, Hancock R E W. Alternative mechanisms of action of cationic antimicrobial peptides on bacteria[J]. Expert. Rev. Anti. Infect. Ther., 2007, 5: 951
[163] Jenssen H, Hancock R E.Therapeutic potential of HDPs as immunomodulatory agents[J]. Methods Mol. Biol., 2010, 618: 329
[164] Mouri?o V, Cattalini J P, Boccaccini A R.Metallic ions as therapeutic agents in tissue engineering scaffolds: An overview of their biological applications and strategies for new developments[J]. J. R. Soc. Interface, 2012, 9: 401
[165] Habibovic P, Barralet J E.Bioinorganics and biomaterials: Bone repair[J]. Acta Biomater., 2011, 7: 3013
[166] Bose S, Fielding G, Tarafder S, et al.Understanding of dopant-induced osteogenesis and angiogenesis in calcium phosphate ceramics[J]. Trends. Biotechnol., 2013, 31: 594
[167] Gorth D J, Puckett S, Ercan B, et al.Decreased bacteria activity on Si3N4 surfaces compared with PEEK or titanium[J]. Int. J. Nanomedicine, 2012, 7: 4829
[168] An Y H, Friedman R J.Concise review of mechanisms of bacterial adhesion to biomaterial surfaces[J]. J. Biomed. Mater. Res., 1998, 43A: 338
[169] Woodling S E, Moraru C I.Influence of surface topography on the effectiveness of pulsed light treatment for the inactivation of Listeria innocua on stainless-steel surfaces[J]. J. Food Sci., 2005, 70: M345
[170] Puckett S D, Taylor E, Raimondo T, et al.The relationship between the nanostructure of titanium surfaces and bacterial attachment[J]. Biomaterials, 2010, 31: 706
[171] Mitik-Dineva N, Wang J, Truong V K, et al.Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus attachment patterns on glass surfaces with nanoscale roughness[J]. Curr. Microbiol., 2009, 58: 268
[172] Khang D, Kim S Y, Liu-Snyder P, et al.Enhanced fibronectin adsorption on carbon nanotube/poly (carbonate) urethane: Independent role of surface nano-roughness and associated surface energy[J]. Biomaterials, 2007, 28: 4756
[173] Webster T J, Ejiofor J U.Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo[J]. Biomaterials, 2004, 25: 4731
[174] Zhao G, Raines A L, Wieland M, et al.Requirement for both micron-and submicron scale structure for synergistic responses of osteoblasts to substrate surface energy and topography[J]. Biomaterials, 2007, 28: 2821
[175] Lim J Y, Dreiss A D, Zhou Z Y, et al.The regulation of integrin-mediated osteoblast focal adhesion and focal adhesion kinase expression by nanoscale topography[J]. Biomaterials, 2007, 28: 1787
[176] Biggs M J P, Richards R G, Gadegaard N, et al. Interactions with nanoscale topography: Adhesion quantification and signal transduction in cells of osteogenic and multipotent lineage[J]. J. Biomed. Mater. Res., 2009, 91A: 195
[177] Watari S, Hayashi K, Wood J A, et al.Modulation of osteogenic differentiation in hMSCs cells by submicron topographically-patterned ridges and grooves[J]. Biomaterials, 2012, 33: 128
[178] Ploux L, Anselme K, Dirani A, et al.Opposite responses of cells and bacteria to micro/nanopatterned surfaces prepared by pulsed plasma polymerization and UV-irradiation[J]. Langmuir, 2009, 25: 8161
[179] Absolom D R, Lamberti F V, Policova Z, et al.Surface thermodynamics of bacterial adhesion[J]. Appl. Environ. Microbiol., 1983, 46: 90
[180] Zhang L, Ning C Y, Zhou T, et al.Polymeric nanoarchitectures on Ti-based implants for antibacterial applications[J]. ACS. Appl. Mater. Interfaces, 2014, 6: 17323
[181] Dalton H M, Poulsen L K, Halasz P, et al.Substratum-induced morphological changes in a marine bacterium and their relevance to biofilm structure[J]. J. Bacteriol., 1994, 176: 6900
[182] Hogt A H, Dankert J, Feijen J A N. Adhesion of Staphylococcus epidermidis and Staphylococcus saprophyticus to a hydrophobic biomaterial[J]. Microbiology, 1985, 131: 2485
[183] Hayashi H, Seiki H, Tsuneda S, et al.Influence of growth phase on bacterial cell electrokinetic characteristics examined by soft particle electrophoresis theory[J]. J. Colloid Interface Sci., 2003, 264: 565
[184] Roosjen A, Norde W, Van Der Mei H C, et al. The use of positively charged or low surface free energy coatings versus polymer brushes in controlling biofilm formation [A]. Characterization of Polymer Surfaces and Thin Films[M]. Berlin Heidelberg: Springer, 2006: 138
[185] Wilson C J, Clegg R E, Leavesley D I, et al.Mediation of biomaterial-cell interactions by adsorbed proteins: A review[J]. Tissue. Eng., 2005, 11: 1
[186] Liao H H, Andersson A S, Sutherland D, et al.Response of rat osteoblast-like cells to microstructured model surfaces in vitro[J]. Biomaterials, 2003, 24: 649
[1] 高晗, 刘力, 周笑宇, 周心怡, 蔡汶君, 周泓伶. Ti6Al4V表面微纳结构的制备及生物活性[J]. 金属学报, 2023, 59(11): 1466-1474.
[2] 崔振铎, 朱家民, 姜辉, 吴水林, 朱胜利. Ti及钛合金表面改性在生物医用领域的研究进展[J]. 金属学报, 2022, 58(7): 837-856.
[3] 王鲁宁, 刘丽君, 岩雨, 杨坤, 陆黎立. 蛋白质吸附对医用金属材料体外腐蚀行为的影响[J]. 金属学报, 2021, 57(1): 1-15.
[4] 郑玉峰,吴远浩. 处在变革中的医用金属材料[J]. 金属学报, 2017, 53(3): 257-297.
[5] 史显波,徐大可,闫茂成,严伟,单以银,杨柯. 新型含Cu管线钢的微生物腐蚀行为研究[J]. 金属学报, 2017, 53(2): 153-162.
[6] 张二林, 王晓燕, 憨勇. 医用多孔Ti及钛合金的国内研究现状[J]. 金属学报, 2017, 53(12): 1555-1567.
[7] 潘瑜, 张殿涛, 谭雨宁, 李珍, 郑玉峰, 李莉. 等通道挤压制备医用超细晶Mg-3Sn-0.5Mn合金及其力学性能[J]. 金属学报, 2017, 53(10): 1357-1363.
[8] 于振涛, 余森, 程军, 麻西群. 新型医用钛合金材料的研发和应用现状[J]. 金属学报, 2017, 53(10): 1238-1264.
[9] 彭聪, 张书源, 任玲, 杨柯. 冷却速率对含Cu钛合金显微组织和性能的影响[J]. 金属学报, 2017, 53(10): 1377-1384.
[10] 吴法宇,李建伟,齐羿,丁梧桐,樊子铭,周艳文. 粉末靶射频磁控溅射非晶Al2O3薄膜的制备与性能研究*[J]. 金属学报, 2016, 52(12): 1595-1600.
[11] 罗新民, 王翔, 陈康敏, 鲁金忠, 王兰, 张永康. 激光冲击诱导的航空铝合金表层高熵结构及其抗蚀性[J]. 金属学报, 2015, 51(1): 57-66.
[12] 王帅, 杨春光, 徐大可, 沈明钢, 南黎, 杨柯. 热处理对3Cr13MoCu马氏体不锈钢抗菌性能的影响[J]. 金属学报, 2014, 50(12): 1453-1460.
[13] 向红亮, 郭培培, 刘东. 含Ag抗菌双相不锈钢组织及抗菌性能研究[J]. 金属学报, 2014, 50(10): 1210-1216.
[14] 罗新民,陈康敏,张静文,鲁金忠,任旭东,罗开玉,张永康. Al和铝合金激光冲击表面改性的位错机制[J]. 金属学报, 2013, 49(6): 667-674.
[15] 向红亮 范金春 刘东 郭培培. 抗菌时效处理对含Cu双相不锈钢组织和性能的影响 I. 富Cu相的微观结构及演变规律[J]. 金属学报, 2012, 48(9): 1081-1088.