Please wait a minute...
金属学报  2017, Vol. 53 Issue (7): 869-878    DOI: 10.11900/0412.1961.2017.00015
  本期目录 | 过刊浏览 |
片层石墨尺寸对片层石墨/Al复合材料的强度和热导率的影响
刘晓云1,2,王文广2,王东2,肖伯律2,倪丁瑞2,陈礼清1,马宗义2()
1 东北大学轧制技术及连轧自动化国家重点实验室 沈阳 110819
2 中国科学院金属研究所沈阳材料科学国家(联合)实验室 沈阳 110016
Effect of Graphite Flake Size on the Strength and Thermal Conductivity of Graphite Flakes/Al Composites
Xiaoyun LIU1,2,Wenguang WANG2,Dong WANG2,Bolv XIAO2,Dingrui NI2,Liqing CHEN1,Zongyi MA2()
1 State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
2 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(1498 KB)   HTML
摘要: 

采用粉末冶金法制备了名义尺寸为150、300、500 μm的片层石墨(graphite flakes, Gf)增强铝基(50%Gf/Al,体积分数)复合材料,得到密度均接近理论密度的致密复合材料坯锭。片层石墨与铝合金基体结合紧密,界面处无裂纹、孔洞等缺陷。片层石墨的(001)Gf基面与复合材料坯锭的圆周方向(坯锭的xy平面)基本平行,但受粉末冶金工艺的影响,较小片层石墨的(001)Gf基面与坯锭的xy平面略有偏差。随着片层石墨的尺寸增大,偏差逐渐减少。复合材料的强度随着片层石墨尺寸增加逐渐降低。150 μm片层石墨复合材料的弯曲强度为82 MPa,当片层石墨尺寸增至500 μm时,强度降低至39 MPa。片层石墨强度较低,裂纹容易沿片层石墨的层间扩展,随着片层石墨尺寸增大,这一现象更加明显,容易在断口中观察到片层石墨剥离的现象。复合材料xy平面的热导率随片层石墨尺寸增大而增加,最高可达604 W/(mK),与尺寸较小的片层石墨相比提高63%。300、500 μm片层石墨复合材料的界面换热系数略低于理论值,但150 μm片层石墨复合材料的界面换热系数明显小于理论值。除了片层石墨的尺寸,其形状、分布和内部缺陷等对复合材料的热导率也有一定的影响。

关键词 片层石墨铝基复合材料热导率力学性能    
Abstract

Graphite flakes reinforced Al matrix composites (Gf /Al) with low density, good machining property and high thermal conductivity are considered an excellent heat sink materials used in electronic industry. When the composites are manufactured by liquid method such as liquid infiltration, it is easy to achieve a high thermal conductivity composite. However, the Al4C3 phase would be formed in the composite, which will decrease the corrosion properties of the composites. The powder metallurgy technique could avoid the formation of the Al4C3 phase. In this work, three seized graphite flakes (150, 300, 500 μm) were used to investigate the effect of the graphite flake size on the strength and thermal conductivity of Gf/Al alloy composites. The 50%Gf /Al alloy (volume fraction) composites were fabricated by the powder metallurgy technique. The density of all the three Gf /Al alloy composites were similar to the theoretical density. The graphite flakes had a well bonding with Al alloy matrix without cracks and pores. The (001)Gf basal plane of the graphite flakes were almost parallel to the circular plane (xy plane) of the composites ingot. However, for the small graphite flakes, their (001)Gf basal plane was not well parallel to the xy plane of the composite ingot due to the powder metallurgy process. For the large graphite flakes, they exhibited a good orientation in the xy plane of the composite ingot. The strength of the Gf /Al alloy composites decreased with the increase of the graphite flake size. For the 150 μm graphite flake, the bending strength of the Gf /Al alloy composite was 82 MPa. However, for the 500 μm graphite flake, the bending strength of the composite decreased to 39 MPa. Due to the low strength between the layers of the graphite flake, the cracks were prone to expand in the graphite flake. As the size of the graphite flake increased, this phenomenon became more obviously. It is easy to observe that the graphite flakes peeled off on the fracture surfaces. When the size of the graphite flake increased from 150 μm to 500 μm, the thermal conductivity increased by 63%. The highest thermal conductivity was 604 W/(mK). The interfacial thermal conductance (hc) of the composites were calculated by the Maxwell-Garnett type effective medium approximation model. The hc of 300 and 500 μm graphite flake Gf /Al alloy composites were slightly lower than the theoretical value (calculated by the acoustic mismatch model). However, the hc of the 150 μm graphite flake Gf /Al alloy composite was lower than that of the theoretical value. Besides the size of the graphite flakes, the shape, distribution and defect of the graphite flakes also influenced the thermal conductivity of the composites.

Key wordsgraphite flake    aluminum matrix composite    thermal conductivity    mechanical property
收稿日期: 2017-01-13      出版日期: 2017-04-05
基金资助:国家自然科学基金项目Nos.U1508216和51271051

引用本文:

刘晓云,王文广,王东,肖伯律,倪丁瑞,陈礼清,马宗义. 片层石墨尺寸对片层石墨/Al复合材料的强度和热导率的影响[J]. 金属学报, 2017, 53(7): 869-878.
Xiaoyun LIU,Wenguang WANG,Dong WANG,Bolv XIAO,Dingrui NI,Liqing CHEN,Zongyi MA. Effect of Graphite Flake Size on the Strength and Thermal Conductivity of Graphite Flakes/Al Composites. Acta Metall, 2017, 53(7): 869-878.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2017.00015      或      http://www.ams.org.cn/CN/Y2017/V53/I7/869

图1  不同尺寸片层石墨的SEM像
图2  不同尺寸片层石墨的XRD谱
图3  不同尺寸片层石墨Gf /Al复合材料的SEM像
图4  不同尺寸片层石墨Gf /Al复合材料的放大SEM像
图5  500 μm片层石墨Gf /Al复合材料界面的TEM和HRTEM像
Graphite flake size Relative density Bending strength Thermal conductivity
μm (ρexp /ρthe) / % MPa Wm-1K-1
150 99.9 82 370
300 99.5 42 480
500 99.6 39 604
表1  不同片层石墨尺寸Gf /Al复合材料的致密度和性能
图6  不同尺寸片层石墨Gf /Al复合材料断口的SEM像
Material Density Thermal conductivity Specific heat Phonon velocity
kgm-3 Wm-1K-1 Jkg-1K-1 ms-1
Graphite 2200 1200 710 14800
Al 2700 180 895 3620
表2  AMM模型的材料参数[24,25]
[1] Sidhu S S, Kumar S, Batish A.Metal matrix composites for thermal management: A review[J]. Crit. Rev. Solid State Mater. Sci., 2016, 41: 132
[2] Mathias J D, Geffroy P M, Silvain J F.Architectural optimization for microelectronic packaging[J]. Appl. Therm. Eng., 2009, 29: 2391
[3] Rawal S P.Metal-matrix composites for space applications[J]. JOM, 2001, 53(4): 14
[4] Xia Y, Song Y Q, Cui S, et al.Progress in thermal management materials[J]. Mater. Rev., 2008, 22(1): 4
[4] (夏杨, 宋月清, 崔舜等. 热管理材料的研究进展[J]. 材料导报, 2008, 22(1): 4)
[5] Xue C, Yu J K.Enhanced thermal transfer and bending strength of SiC/Al composite with controlled interfacial reaction[J]. Mater. Des., 2014, 53: 74
[6] Liu X Y, Wang W G, Wang D, et al.Effect of nanometer TiC coated diamond on the strength and thermal conductivity of diamond/Al composites[J]. Mater. Chem. Phys., 2016, 182: 256
[7] Yoshida K, Morigami H.Thermal properties of diamond/copper composite material[J]. Microelectron. Reliab., 2004, 44: 303
[8] Fu H T, Huang Y, Wu H W, et al.Synthesis by vacuum infiltration, microstructure, and thermo-physical properties of graphite-aluminum composite[J]. ?Adv. Eng. Mater., 2016, 18: 1609
[9] Zhou S X, Chiang S, Xu J Z, et al.Modeling the in-plane thermal conductivity of a graphite/polymer composite sheet with a very high content of natural flake graphite[J]. Carbon, 2012, 50: 5052
[10] Li W J, Liu Y, Wu G H.Preparation of graphite flakes/Al with preferred orientation and high thermal conductivity by squeeze casting[J]. Carbon, 2015, 95: 545
[11] Kurita H, Miyazaki T, Kawasaki A, et al.Interfacial microstructure of graphite flake reinforced aluminum matrix composites fabricated via hot pressing[J]. Composites, 2015, 73A: 125
[12] Prieto R, Molina J M, Narciso J, et al.Thermal conductivity of graphite flakes-SiC particles/metal composites[J]. Composites, 2011, 42A: 1970
[13] Yang Y W, Huang Y, Wu H W, et al.Interfacial characteristic, thermal conductivity, and modeling of graphite flakes/Si/Al composites fabricated by vacuum gas pressure infiltration[J]. J. Mater. Res., 2016, 31: 1723
[14] Prieto R, Molina J M, Narciso J, et al.Fabrication and properties of graphite flakes/metal composites for thermal management applications[J]. Scr. Mater., 2008, 59: 11
[15] Chen J K, Huang I S.Thermal properties of aluminum-graphite composites by powder metallurgy[J]. Composites, 2013, 44B: 698
[16] Wang D, Xiao B L, Wang Q Z, et al.Friction stir welding of SiCp/2009Al composite plate[J]. Mater. Des., 2013, 47: 243
[17] Huang Y, Ouyang Q B, Guo Q, et al.Graphite film/aluminum laminate composites with ultrahigh thermal conductivity for thermal management applications[J]. Mater. Des., 2016, 90: 508
[18] Zhou C, Huang W, Chen Z, et al.In-plane thermal enhancement behaviors of Al matrix composites with oriented graphite flake alignment[J]. Composites, 2015, 70B: 256
[19] Wang D, Xiao B L, Wang Q Z, et al.Evolution of the microstructure and strength in the nugget zone of friction stir welded SiCp/Al-Cu-Mg composite[J]. J. Mater. Sci. Technol., 2014, 30: 54
[20] Xue C, Bai H, Tao P F, et al.Thermal conductivity and mechanical properties of flake graphite/Al composite with a SiC nano-layer on graphite surface[J]. Mater. Des., 2016, 108: 250
[21] Nan C W, Birringer R, Clarke D R, et al.Effective thermal conductivity of particulate composites with interfacial thermal resistance[J]. J. Appl. Phys., 1997, 81: 6692
[22] Wang Z T, Tian R Z.Aluminum Alloy and Its Processing Manual [M]. 3rd Ed., Changsha: Central South University Press, 2005: 314
[22] (王祝堂, 田荣璋. 铝合金机器加工手册 [M]. 长沙: 中南大学出版社, 2005: 314)
[23] Molina J M, Louis E.Anisotropy in thermal conductivity of graphite flakes-SiCp/matrix composites: implications in heat sinking design for thermal management applications[J]. Mater. Charact., 2015, 109: 107
[24] Shenogin S, Gengler J, Roy A, et al.Molecular dynamics studies of thermal boundary resistance at carbon-metal interfaces[J]. Scr. Mater., 2013, 69: 100
[25] Chu K, Jia C C, Liang X B, et al.Modeling the thermal conductivity of diamond reinforced aluminium matrix composites with inhomogeneous interfacial conductance[J]. Mater. Des., 2009, 30: 4311
[26] Zhou C, Ji G, Chen Z, et al.Fabrication, interface characterization and modeling of oriented graphite flakes/Si/Al composites for thermal management applications[J]. Mater. Des., 2014, 63: 719
[1] 李天瑞, 刘国怀, 徐莽, 牛红志, 付天亮, 王昭东, 王国栋. Ti-43Al-4Nb-1.5Mo合金包套锻造与热处理过程的微观组织及高温拉伸性能[J]. 金属学报, 2017, 53(9): 1055-1064.
[2] 侯陇刚, 刘明荔, 王新东, 庄林忠, 张济山. 高强7050铝合金超低温大变形加工与组织、性能调控[J]. 金属学报, 2017, 53(9): 1075-1090.
[3] 刘国怀, 李天瑞, 徐莽, 付天亮, 李勇, 王昭东, 王国栋. 累积叠轧TC4钛合金的组织演化与力学性能[J]. 金属学报, 2017, 53(9): 1038-1046.
[4] 张文奇, 朱海红, 胡志恒, 曾晓雁. AlSi10Mg的激光选区熔化成形研究[J]. 金属学报, 2017, 53(8): 918-926.
[5] 李细锋, 陈楠楠, 李佼佼, 何雪婷, 刘红兵, 郑兴伟, 陈军. 温度与应变速率对Invar 36合金变形行为的影响[J]. 金属学报, 2017, 53(8): 968-974.
[6] 郭廷彪, 李琦, 王晨, 张锋, 贾智. 单晶Cu等通道转角挤压A路径形变特征及力学性能[J]. 金属学报, 2017, 53(8): 991-1000.
[7] 杨建海,张玉祥,葛利玲,程晓,陈家照,高杨. 焊前混合表面纳米化对2A14铝合金搅拌摩擦焊接头微观组织和力学性能的影响[J]. 金属学报, 2017, 53(7): 842-850.
[8] 张洪伟,秦学智,李小武,周兰章. 一种高硼定向凝固合金的初熔行为及其对力学性能的影响[J]. 金属学报, 2017, 53(6): 684-694.
[9] 孙磊,陈明和,张亮,杨帆. Sn-Ag-Cu钎料焊接显微组织演化和性能研究[J]. 金属学报, 2017, 53(5): 615-621.
[10] 张志强,董利民,关少轩,杨锐. TC16钛合金辊模拉丝过程中的显微组织和力学性能[J]. 金属学报, 2017, 53(4): 415-422.
[11] 刘丰刚,林鑫,宋衎,宋梦华,韩一帆,黄卫东. 激光修复300M钢的组织及力学性能研究[J]. 金属学报, 2017, 53(3): 325-334.
[12] 康举,梁苏莹,吴爱萍,李权,王国庆. 2219铝合金搅拌摩擦焊中的局部液化现象及对接头力学性能的影响[J]. 金属学报, 2017, 53(3): 358-368.
[13] 李安华, 张月明, 冯海波, 邹宁, 吕忠山, 邹旭杰, 李卫. 烧结Ce-Fe-B磁体的力学性能[J]. 金属学报, 2017, 53(11): 1478-1486.
[14] 郑浩然, 陈民芳, 李祯, 由臣, 刘德宝. MgO改性HA对Mg-Zn-Zr/m-HA复合材料组织及性能的影响[J]. 金属学报, 2017, 53(10): 1364-1376.
[15] 彭聪, 张书源, 任玲, 杨柯. 冷却速率对含Cu钛合金显微组织和性能的影响[J]. 金属学报, 2017, 53(10): 1377-1384.