Please wait a minute...
金属学报  2017, Vol. 53 Issue (11): 1487-1494    DOI: 10.11900/0412.1961.2017.00010
  研究论文 本期目录 | 过刊浏览 |
Al-Mn系合金的组织控制与高温性能研究
刘贤翠, 潘冶(), 唐智骄, 何为桥, 陆韬
东南大学材料科学与工程学院江苏省先进金属材料高技术研究重点实验室 南京 211189
Microstructure Control and High Temperature Properties of Al-Mn-Based Alloys
Xiancui LIU, Ye PAN(), Zhijiao TANG, Weiqiao HE, Tao LU
Jiangsu Key Laboratory for Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
引用本文:

刘贤翠, 潘冶, 唐智骄, 何为桥, 陆韬. Al-Mn系合金的组织控制与高温性能研究[J]. 金属学报, 2017, 53(11): 1487-1494.
Xiancui LIU, Ye PAN, Zhijiao TANG, Weiqiao HE, Tao LU. Microstructure Control and High Temperature Properties of Al-Mn-Based Alloys[J]. Acta Metall Sin, 2017, 53(11): 1487-1494.

全文: PDF(5652 KB)   HTML
摘要: 

研究了合金元素Mg、Ni和Zr以及退火工艺对Al-Mn系合金显微组织和高温性能的影响。结果表明:Al-Mn系合金经冷轧+873 K保温10 min得到细小等轴晶,而冷轧+623 K保温1 h+873 K保温10 min可获得有利于高温性能的长条状组织。合金元素Mg促进了热处理过程中AlMnSi相的析出,合金元素Zr、Ni增加了沉淀相的数量和种类,析出了Al3Zr、 AlMnSiNi耐热相。Mg和Ni联合添加时高温力学性能最优,523 K下抗拉强度达102 MPa (比Al-Mn合金提高50 MPa),523 K、40 MPa条件下稳态蠕变速率为3.93×10-8 s-1,比Al-Mn合金低2个数量级。由于Al-Mn合金的蠕变过程受位错攀移控制,基体中耐热相越多,对位错运动的钉扎作用越强,越有利于提高Al-Mn系合金的高温抗蠕变性能。

关键词 Al-Mn合金合金元素组织控制抗蠕变    
Abstract

The process of production and working environment of heat exchangers call for materials with good elevated temperature properties. However, the previous investigations were mainly focused on their room temperature properties. The relationship between microalloying and high temperature properties, especially creep properties of Al-Mn-based alloys are barely discussed. In order to improve the industrial applications of Al-Mn-based alloys, the effect of Mg, Ni and Zr additions and annealing process on the microstructure and high temperature properties of Al-Mn-based alloys were studied in this work. The investigated alloys were treated in two ways, first one is cold-rolling and heat treatment at 873 K for 10 min, and the second one is cold-rolling, heat treatment at 623 K for 1 h and 873 K for 10 min. The results indicate that annealing process has remarkable effect on the grain shape, fine equiaxed crystal grains are obtained in the former, while stable elongated grains are obtained for precipitation precedes recrystallization at 623 K in the latter. With Mg addition, more AlMnSi phase precipitated during annealing. The addition of Zr and Ni increases the type and amount of heat resistant compounds, precipitate Al3Zr and AlMnSiNi, which are beneficial to improving high temperature properties of Al-Mn alloy. Al-Mn-0.3Mg-0.2Ni alloy has the best elevated temperature properties, and the tensile strength of it is 102 MPa (50 MPa higher than Al-Mn alloy) at 523 K. And the steady-creep rate is strongly decreased to 3.93×10-8 s-1, two orders of magnitude smaller than Al-Mn alloy at the temperature of 523 K under the stress of 40 MPa. With dispersoids compli cated or increased, the movement of dislocations are pinned strongly, which are contribute to improving the creep properties of Al-Mn alloy for the creep is mainly controlled by dislocation climb.

Key wordsAl-Mn alloy    alloy element    microstructure control    creep resistance
收稿日期: 2017-01-06     
ZTFLH:  TG146.2  
基金资助:江苏省先进金属材料重点实验室项目No.BM2007204
作者简介:

作者简介 刘贤翠,女,1989年生,硕士生

No. Alloy Mn Fe Si Cu Mg Ni Zr Al
S1 Al-Mn 1.16 0.51 0.55 0.12 - - - Bal.
S2 Al-Mn-0.3Mg 1.15 0.53 0.59 0.13 0.33 - - Bal.
S3 Al-Mn-0.3Mg-0.2Zr 1.07 0.50 0.53 0.14 0.33 - 0.19 Bal.
S4 Al-Mn-0.3Mg-0.2Ni 1.12 0.54 0.58 0.15 0.33 0.22 - Bal.
表1  试样的化学成分
图1  蠕变试样尺寸示意图
图2  4种合金冷轧板经873 K保温10 min热处理后显微组织的OM像
图3  测定的4种合金的析出与再结晶开始时间曲线
图4  4种合金的冷轧板经623 K保温1 h+873 K保温10 min热处理后显微组织的OM像
图5  4种合金中沉淀相的TEM像
图6  合金中沉淀相的EDS分析
图7  4种合金在不同温度下的高温拉伸性能
Sample 473 K 523 K
S1 8.80×10-8 5.07×10-6
S2 1.72×10-8 2.24×10-6
S3 7.69×10-9 5.21×10-8
S4 4.71×10-9 3.93×10-8
表2  4种合金在473和523 K、40 MPa时的稳态蠕变速率
图8  4种合金在不同条件下的蠕变曲线
图9  Al-Mn合金在473 K、40 MPa条件下蠕变后的TEM像
[1] Li G Q, Zuo X R, Song T F, et al.Application situation and progress of wrought Al-Mn alloy[J]. Hot Working Technol., 2006, 35(5): 63(李广钦, 左秀荣, 宋天福等. 变形铝锰系合金的应用现状及发展动态[J]. 热加工工艺, 2006, 35(5): 63)
[2] Chris Co., LTD. Materials of Al alloy used in radiator [P].Chin Pat, 02821519.2, 2005(克里斯有限公司. 用于制造散热片材料的铝合金 [P].中国专利, 02821519.2, 2005)
[3] Fukumoto A, Niikura A, Negura K, et al.Aluminum alloy brazing sheet [P]. US Pat, 20070166565A1, 2010
[4] Yun S C, Kim K S, Euh K J.Effect of intermediate heat treatment on the mechanical properties of 3003/4343 aluminum clad sheet manufactured by strip casting/clad rolling[J]. Mater. Trans., 2015, 56: 242
[5] Kahl S, Ekstr?m H E, Mendoza J.Tensile, fatigue, and creep properties of aluminum heat exchanger tube alloys for temperatures from 293 K to 573 K (20 ℃ to 300 ℃)[J]. Metall. Mater. Trans., 2013, 45A: 663
[6] Northwood D O, Smith I O.Stress change tests during the steady state creep of aluminum alloy 3004 at 300 ℃[J]. Mater. Sci. Eng., 1986, A79: 175
[7] Liu K, Chen X G.Development of Al-Mn-Mg 3004 alloy for applications at elevated temperature via dispersoid strengthening[J]. Mater. Des., 2015, 84: 340
[8] Tangen S, Sj?lstad K, Furu T, et al.Effect of concurrent precipitation on recrystallization and evolution of the p-texture component in a commercial Al-Mn alloy[J]. Metall. Mater. Trans., 2010, 41A: 2970
[9] Dehmas M, Aeby-Gautier E, Archambault P, et al.Interaction between eutectic intermetallic particles and dispersoids in the 3003 aluminum alloy during homogenization treatments[J]. Metall. Mater. Trans., 2013, 44A: 1059
[10] Li Y J, Arnberg L.Quantitative study on the precipitation behavior of dispersoids in DC-cast AA3003 alloy during heating and homogenization[J]. Acta Mater., 2003, 51: 3415
[11] Tu Y Y, Qian H, Zhou X F, et al.Effect of scandium on the interaction of concurrent precipitation and recrystallization in commercial AA3003 aluminum alloy[J]. Metall. Mater. Trans., 2014, 45A: 1883
[12] Zhang J.Effect of rolling and annealing process on properties of 4343/3003/7072 layered aluminum foil [D]. Changsha: Central South University, 2013(张静. 轧制及退火工艺对4343/3003/7072钎焊箔性能的影响 [D]. 长沙: 中南大学, 2013)
[13] Copper M, Robinson K.The crystal structure of the ternary alloy α-AlMnSi[J]. Acta Crystallogr., 1966, 20: 614
[14] Poková M ?, Zimina M, Cieslar M.Effect of pre-annealing on microstructure evolution of TRC AA3003 aluminum alloy subjected to ECAP[J]. Trans. Nonferrous Met. Soc. China, 2016, 26: 627
[15] Zhang J S.High Temperature Deformation and Fracture of Materials [M]. Beijing: Science Press, 2007: 4(张俊善. 材料的高温变形与断裂 [M]. 北京: 科学出版社, 2007: 4)
[16] Casting and Smelting of Non-Ferrous Alloys Joint Editorial. Casting and Smelting of Non-ferrous Alloys [M]. Beijing: National Defence Industry Press, 1980: 186(《铸造有色合金及其熔炼》联合编写组. 铸造有色合金及其熔炼 [M]. 北京: 国防工业出版社, 1980: 186)
[17] Kim W J, Chung S W, Chung C S, et al.Superplasticity in thin magnesium alloy sheets and deformation mechanism maps for magnesium alloys at elevated temperatures[J]. Acta Mater., 2001, 49: 3337
[18] Yan J L, Sun Y S, Xue F, et al.An investigation on the creep behavior of pure magnesium[J]. Acta Metall. Sin., 2008, 44: 1354(晏井利, 孙扬善, 薛峰等. 纯Mg的蠕变行为研究[J]. 金属学报, 2008, 44: 1354)
[19] Kaufman J G.Properties of Aluminum Alloys: Tensile, Creep, and Fatigue Data at High and Low Temperatures[M]. Materials Park, Ohio: ASM International, 2000: 93
[20] Meng Q E, Xi X R.Correlation between stacking fault energy and creep property of solid solution strengthening superalloys[J]. Acta Metall. Sin., 1987, 23: 344(孟庆恩, 郗秀荣. 固溶强化高温合金堆垛层错能与高温蠕变性能的关系[J]. 金属学报, 1987, 23: 344)
[21] Somekawa H, Hirai K, Watanabe H, et al.Dislocation creep behavior in Mg-Al-Zn alloys[J]. Mater. Sci. Eng., 2005, A407: 53
[22] Chung S W, Watanabe H, Kim W J.Creep deformation mechanisms in coarse-grained solid solution Mg alloys[J]. Mater. Trans., 2004, 45: 1266
[23] Luiggi N.Isochronal study of Al-Mg, Al-Mn and Al-Mn-0.3Mg alloys using electrical resistivity and thermoelectric power[J]. Mater. Res., 2005, 8(1): 31
[24] Du X D.Study on ageing and creep of Al-0.1Zr alloy[J]. Mater. Sci. Eng., 2006, A423: 84
[25] Miresmaeili S M, Nami B.Impression creep behavior of Al-1.9%Ni-1.6%Mn-1%Mg alloy[J]. Mater. Des., 2014, 56: 286
[26] Sun C Y, Shi B, Wu C B, et al.High temperature creep deformation mechanism of BSTMUF601 superalloy[J]. Acta Metall. Sin., 2015, 51: 349(孙朝阳, 石兵, 武传标等. BSTMUF601合金的高温蠕变变形机制[J]. 金属学报, 2015, 51: 349)
[27] Forbord B, Hallem H, Ryum N, et al.Precipitation and recrystallisation in Al-Mn-Zr with and without Sc[J]. Mater. Sci. Eng., 2004, A387: 936
[1] 张伟东, 崔宇, 刘莉, 王文泉, 刘叡, 李蕊, 王福会. 600℃ NaCl盐雾环境下GH4169合金的腐蚀行为[J]. 金属学报, 2023, 59(11): 1475-1486.
[2] 李亚敏, 张瑶瑶, 赵旺, 周生睿, 刘洪军. CuInconel 718合金Nb偏析影响机理的第一性原理研究[J]. 金属学报, 2022, 58(2): 241-249.
[3] 曹丽华, 陈胤伯, 史起源, 远杰, 刘志权. 合金元素对中温Sn-Ag-Cu焊料互连组织及剪切强度的影响[J]. 金属学报, 2019, 55(12): 1606-1614.
[4] 田家龙,李永灿,王威,严伟,单以银,姜周华,杨柯. 多相强化型马氏体时效不锈钢中的合金元素偏聚效应*[J]. 金属学报, 2016, 52(12): 1517-1526.
[5] 郭建亭,周兰章,田玉新,侯介山,李谷松. 合金元素Hf, Sn, Ta, Zr, Dy和Ho对Nb-Nb5Si3合金组织和力学性能的影响*[J]. 金属学报, 2015, 51(7): 815-827.
[6] 谷月峰,崔传勇,袁勇,钟志宏. 一种高性能航空涡轮盘用铸锻合金的研究进展[J]. 金属学报, 2015, 51(10): 1191-1206.
[7] 王学, 李勇, 任遥遥, 刘洪伟, 刘洪, 王伟. Laves相析出对P92钢合金元素再分布的影响[J]. 金属学报, 2014, 50(10): 1203-1209.
[8] 杨泽南,杨志刚,夏苑,张弛. 层片状珠光体组织奥氏体化速率的计算[J]. 金属学报, 2013, 49(7): 890-896.
[9] 李宝宽 代凤羽 齐凤升 杨冉. 双水口注流连铸复合钢坯结晶器流场和合金元素浓度场研究[J]. 金属学报, 2010, 46(6): 736-742.
[10] 万晓峰 孙扬善 薛烽 白晶 陶卫建. 含Sr和Ca的Mg--12Zn--4Al--0.3Mn合金的显微组织和力学性能[J]. 金属学报, 2009, 45(5): 585-591.
[11] 付建强; 孙威; 谢中柱; 刘林林; 张泽 . 合金元素对铸态镁合金中长周期堆垛结构的形成与特征的影响[J]. 金属学报, 2008, 44(4): 428-432 .
[12] 由伟; 方鸿生; 白秉哲 . 用反向传播人工神经网络预测低碳低合金钢的马氏体转变开始温度[J]. 金属学报, 2003, 39(6): 630-634 .
[13] 冯涤; 李尚平; 骆合力; 张春福; 陈蓓京 . 改性铸造Ni3Al基合金MX246组织与性能研究[J]. 金属学报, 2002, 38(11): 1181-1185 .
[14] 杨平 . 轧制Al-Mn合金再结晶过程中立方织构的形成[J]. 金属学报, 1999, 35(3): 225-231 .
[15] 郭乃名;过家驹. 熔盐电镀Al-Ti和Al-Mn合金[J]. 金属学报, 1996, 32(3): 274-277.