Please wait a minute...
金属学报  2017, Vol. 53 Issue (9): 1025-1037    DOI: 10.11900/0412.1961.2017.00002
  本期目录 | 过刊浏览 |
W对新型Nb稳定化奥氏体耐热铸钢1000 ℃蠕变行为的影响
张银辉, 冯强
北京科技大学新金属材料国家重点实验室 北京 100083
Effects of W on Creep Behaviors of Novel Nb-Bearing Austenitic Heat-Resistant Cast Steels at 1000 ℃
Yinhui ZHANG, Qiang FENG
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

张银辉, 冯强. W对新型Nb稳定化奥氏体耐热铸钢1000 ℃蠕变行为的影响[J]. 金属学报, 2017, 53(9): 1025-1037.
Yinhui ZHANG, Qiang FENG. Effects of W on Creep Behaviors of Novel Nb-Bearing Austenitic Heat-Resistant Cast Steels at 1000 ℃[J]. Acta Metall Sin, 2017, 53(9): 1025-1037.

全文: PDF(12953 KB)   HTML
摘要: 

以新设计的4种不同W含量(0~4.87%,质量分数)的Nb稳定化奥氏体耐热铸钢为研究对象,通过在1000 ℃、50 MPa条件下的蠕变性能测试和蠕变前后的组织分析,研究了W对奥氏体耐热铸钢1000 ℃蠕变行为的影响机理。结果表明:合金的最小蠕变速率随W含量的增加先降低后增高。合金的主要析出相为Nb(C, N)和富Cr相。W含量的增加对Nb(C, N)的影响很小,但明显促进富Cr碳化物析出,并促使(Cr, Fe, W)7C3转变为(Cr, Fe, W)23C6。而且,过量的W添加会促进金属间化合物χ相析出。在蠕变过程中,合金的基体还会二次析出纳米级的Nb(C, N),阻碍位错运动,从而进一步提高合金的蠕变强度。但是,富Cr相胞团,尤其是胞团内的χ相,会促进蠕变裂纹形核长大,从而提高合金的蠕变速率,降低蠕变寿命。

关键词 汽车发动机奥氏体耐热铸钢蠕变χ;相固溶强化    
Abstract

In order to comply with more stringent emissions and fuel economy regulations worldwide, the operation temperature of exhaust components for automotive gasoline engines is now reaching to as high as 1000 ℃, about 200 ℃ higher than the conventional standard. As a result, the incumbent materials for exhaust manifolds and turbine housings are being pushed beyond their high-temperature strength and oxidation limitations. Therefore, there is an urgent demand from automotive industries to develop novel and cost-effective alloys those durable against these increased temperatures. In this work, the effect of W additions on the creep behavior of a series of Nb-bearing austenitic heat-resistant cast steels is investigated at 1000 ℃ and 50 MPa. Microstructures before and after creep rupture tests are carefully characterized to investigate the microstructural evolution during creep deformation. The minimum creep rate of these alloys shows a trend from decline to rise as the W addition is increased. Microstructural analyses reveal that the W addition does not affect the formation of primary Nb(C, N), whereas significantly improves the precipitation of Cr-rich carbides, as well as accelerating the phase transformation from (Cr, Fe, W)7C3 to (Cr, Fe, W)23C6. Moreover, the excessive addition of W leads to the formation of the interme tallic χ-phase. During creep deformation, the secondary precipitation of nano-scale Nb(C, N) also aids in the strengthening of the creep resistance through pinning the dislocations. However, the cellular Cr-rich phase that contains χ-phase significantly accelerates the nucleation and propagation of creep cracks, thereby increasing the creep rate and decreasing the creep life.

Key wordsautomotive gasoline engine,    austenitic heat-resistant cast steel    creep    χ;-phase    solid solution strengthening
收稿日期: 2017-01-03     
ZTFLH:  TG146.1  
基金资助:福特与中国大学合作研究资助项目、中央高校基本科研业务费项目No.FRF-IC-16-005
作者简介:

作者简介 张银辉,男,1985年生,博士生

Alloy Cr Ni Si Mn Nb C N W Fe
4C3N 20.35 9.86 0.60 1.01 2.08 0.43 0.29 - Bal.
4C3N1W 20.38 9.18 0.70 0.95 2.14 0.49 0.30 1.21 Bal.
4C3N3W 21.25 10.08 0.67 0.89 2.31 0.44 0.26 3.14 Bal.
4C3N5W 21.40 9.88 0.60 0.81 2.32 0.40 0.27 4.87 Bal.
表1  不同W含量合金的实测化学成分
图1  不同W含量铸态合金在1000 ℃、50 MPa条件下的典型蠕变应变-时间曲线和蠕变应变速率-时间曲线
Alloy Creep life / h Minimum creep rate / 10-8 s-1 Creep strain / %
4C3N 56.2±7.7 11.2±3.4 27.7±4.9
4C3N1W 96.4±2.0 5.1±0.9 16.6±2.1
4C3N3W 130.4±14.6 3.3±1.1 26.1±5.8
4C3N5W columnar 85.2±8.7 3.9±1.0 17.1±2.0
4C3N5W 74.4±15.7 4.3±0.6 16.1±0.3
表2  不同W含量铸态合金在1000 ℃、50 MPa条件下蠕变的平均实验结果
图2  不同W含量铸态合金典型显微组织的OM像
图3  不同W含量铸态合金典型显微组织的SEM-BSE/SE像
图4  4C3N5W铸态合金相萃取粉末的XRD谱
图5  4C3N3W和4C3N5W(柱状晶)铸态合金的晶粒EBSD取向成像图
图6  不同W含量铸态合金在1000 ℃、50 MPa条件下蠕变断裂后典型显微组织的SEM-SE/BSE像
图7  4C3N5W铸态合金经1000 ℃、50 MPa蠕变后相萃取粉末的XRD谱
Alloy Area fraction / % Nb(C, N) number density / mm-1
Nb(C, N) (Cr, Fe, W)7C3 (Cr, Fe, W)23C6
4C3N 2.6±0.4 0.4±0.2 - 52.0±6.1
4C3N1W 2.8±0.2 1.4±0.5 - 58.5±7.7
4C3N3W 2.8±0.7 3.0±0.4 0.9±0.2 58.6±7.8
4C3N5W columnar 2.9±0.3 0.7±0.2 1.3±0.3 51.6±4.0
4C3N5W 3.1±0.9 0.6±0.1 2.3±0.7 59.4±6.3
表3  不同W含量铸态合金中各相的面积分数和晶界上Nb(C, N)的线密度
Alloy State Fe Cr Ni Si Mn Nb C N W
4C3N As-cast 67.67±2.55 20.58±1.80 10.01±0.25 0.65±0.11 1.00±0.12 0.24±0.05 0.15±0.01 0.06±0.04 -
Crept 70.64±0.33 18.94±0.17 9.73±0.01 0.59±0.01 0.90±0.02 0.25±0.02 0.04±0.01 0.05±0.01 -
4C3N1W As-cast 68.35±0.36 18.37±0.09 9.33±0.02 0.58±0.01 0.90±0.02 0.30±0.03 0.13±0.02 < 0.01 0.92±0.01
Crept 67.41±0.23 19.01±0.08 9.63±0.03 0.74±0.02 1.04±0.02 0.27±0.02 0.01±0.00 0.08±0.02 0.99±0.02
4C3N3W As-cast 64.02±1.16 20.45±0.74 10.27±0.11 0.58±0.05 0.92±0.04 0.30±0.02 0.08±0.01 < 0.01 2.69±0.23
Crept 64.18±0.33 20.12±0.18 10.27±0.10 0.70±0.01 0.97±0.02 0.38±0.14 0.02±0.01 0.02±0.01 2.67±0.03
4C3N5W As-cast 63.52±0.06 20.03±0.33 9.95±0.46 0.52±0.01 0.81±0.02 0.38±0.07 0.09±0.01 < 0.01 3.88±0.23
columnar Crept 62.49±0.38 20.48±0.10 10.52±0.22 0.62±0.01 0.93±0.01 0.38±0.09 0.02±0.00 0.01±0.01 3.97±0.01
4C3N5W As-cast 63.59±0.26 19.81±0.13 10.37±0.06 0.45±0.01 0.82±0.02 0.35±0.00 0.07±0.01 < 0.01 3.75±0.04
Crept 63.65±0.47 20.10±0.03 10.07±0.34 0.53±0.02 0.86±0.02 0.36±0.03 0.02±0.00 < 0.01 3.82±0.07
表4  不同W含量铸态合金蠕变前后EPMA测得的奥氏体基体平均成分
图8  不同W含量铸态合金在蠕变前后奥氏体基体的Vickers硬度
图9  4C3N1W铸态合金经1000 ℃、50 MPa蠕变断裂后奥氏体枝晶间和枝晶干区域典型蠕变组织的TEM明场像和相应的SAED谱
图10  4C3N3W和4C3N5W(柱状晶)铸态合金在1000 ℃、50 MPa条件下蠕变断裂后断口附近典型显微组织的SEM-BSE像
图11  Nb稳定化奥氏体耐热铸钢在1000 ℃的平衡相含量与W添加量的关系图
[1] Matsumoto K, Tojo M, Jinnai Y, et al.Development of compact and high performance turbocharger for 1050 ℃ exhaust gas[J]. Mitsubishi Heavy Ind. Tech. Rev., 2008, 45(3): 1
[2] Kunanoppadon J.Thermal efficiency of a combined turbocharger set with gasoline engine[J]. Am. J. Engg. Applied Sci., 2010, 3: 342
[3] Ebisu M, Terakawa Y, Ibaraki S.Mitsubishi turbocharger for lower pollution cars[J]. Mitsubishi Heavy Ind. Tech. Rev., 2004, 41(1): 40
[4] An B, Shiraishi T.Development of variable two-stage turbocharger for passenger car diesel engines[J]. Mitsubishi Heavy Ind. Tech. Rev., 2010, 47(4): 7
[5] Itoh K, Hayashi K, Souda T.Development of HERCUNITE?-S NSHR?-A5N for high performance gasoline engines[J]. Hitachi Metals Tech. Rev., 2006, 22: 51
[6] Shingledecker J P, Maziasz P J, Evans N D, et al.Creep behavior of a new cast austenitic alloy[J]. Int. J. Pres. Ves. Pip., 2007, 84: 21
[7] Takabayashi H, Ueta S, Shimizu T, et al.Development of thermal fatigue resistant ferritic cast steel for turbine housing of diesel engine automobile[J]. SAE Int. J. Mater. Manuf., 2009, 2: 147
[8] Perron A, Toffolon-Masclet C, Ledoux X, et al.Understanding sigma-phase precipitation in a stabilized austenitic stainless steel (316Nb) through complementary CALPHAD-based and experimental investigations[J]. Acta Mater., 2014, 79: 16
[9] Erneman J, Schwind M, Liu P, et al.Precipitation reactions caused by nitrogen uptake during service at high temperatures of a niobium stabilised austenitic stainless steel[J]. Acta Mater., 2004, 52: 4337
[10] Erneman J, Schwind M, Andrén H O, et al.The evolution of primary and secondary niobium carbonitrides in AISI 347 stainless steel during manufacturing and long-term ageing[J]. Acta Mater., 2006, 54: 67
[11] Yamamoto Y, Brady M P, Santella M L, et al.Overview of strategies for high-temperature creep and oxidation resistance of alumina-forming austenitic stainless steels[J]. Metall. Mater. Trans., 2011, 42A: 922
[12] Pickering F B.Physical Metallurgy and the Design of Steels[M]. London: Applied Science Publishers Ltd, 1978: 12
[13] Medvedeva N I, Van Aken D C, Medvedeva J E. Stability of binary and ternary M23C6 carbides from first principles[J]. Comp. Mater. Sci., 2015, 96: 159
[14] Yamamoto Y, Santella M L, Brady M P, et al.Effect of alloying additions on phase equilibria and creep resistance of alumina-forming austenitic stainless steels[J]. Metall. Mater. Trans., 2009, 40A: 1868
[15] Jung S, Sohn S S, Jo Y H, et al.Effects of Cr and Nb addition on high-temperature tensile properties in austenitic cast steels used for turbo-charger application[J]. Mater. Sci. Eng., 2016, A677: 316
[16] Jung S, Jeon C, Jo Y H, et al.Effects of tungsten and molybdenum on high-temperature tensile properties of five heat-resistant austenitic stainless steels[J]. Mater. Sci. Eng., 2016, A656: 190
[17] Kim Y J, Lee D G, Jeong H K, et al.High temperature mechanical properties of HK40-type heat-resistant cast austenitic stainless steels[J]. J. Mater. Eng. Perform., 2010, 19: 700
[18] Taneike M, Abe F, Sawada K.Creep-strengthening of steel at high temperatures using nano-sized carbonitride dispersions[J]. Nature, 2003, 424: 294
[19] Sherby O D, Burke P M.Mechanical behavior of crystalline solids at elevated temperature[J]. Prog. Mater. Sci., 1968, 13: 323
[20] Rieth M, Falkenstein A, Graf P, et al.Creep of the austenitic steel AISI 316 L(N): Experiments and models [R]. Wissenschaftliche Berichte FZKA 7065, 2004: 1
[21] Zhang Y H, Li M, Godlewski L A, et al.Effects of N/C ratio on solidification behaviors of novel Nb-bearing austenitic heat-resistant cast steels for exhaust components of gasoline engines[J]. Metall. Mater. Trans., 2017, 48A: 1151
[22] Buchanan K, Kral M.Crystallography and morphology of niobium carbide in as-cast HP-niobium reformer tubes[J]. Metall. Mater. Trans., 2012, 43A: 1760
[23] Qiao G W, Wang D H, Cao Z B.An EM study of carbide precipitates in HK40 refractory steel[J]. Acta Metall. Sin., 1986, 22: 67(乔桂文, 王德和, 曹智本. HK40耐热钢碳化物析出的电镜研究[J]. 金属学报, 1986, 22: 67)
[24] Ozbayraktar S, Koursaris A.Effect of superheat on the solidification structures of AISI 310S austenitic stainless steel[J]. Metall. Mater. Trans., 1996, 27B: 287
[25] Zhang Y H, Li M, Godlewski L A, et al.Effective design of new austenitic cast steels for ultra-high temperature automotive exhaust components through combined CALPHAD and experimental approaches[J]. Mater. Sci. Eng., 2017, A683: 195
[26] Zhang Y H, Li M, Godlewski L A, et al.Effects of N on creep properties of austeni-tic heat-resistant cast steels developed for exhaust component applications at 1000 ℃[J]. Acta Metall. Sin., 2016, 52: 661(张银辉, Li M, Godlewski L A等. N对汽车发动机用新型奥氏体耐热铸钢1000 ℃蠕变性能的影响[J]. 金属学报, 2016, 52: 661)
[27] Lo K H, Shek C H, Lai J K L. Recent developments in stainless steels[J]. Mater. Sci. Eng., 2009, R65: 39
[28] Ribeiro E A A G, Papaléo R, Guimar?es J R C. Microstructure and creep behavior of a niobium alloyed cast heat-resistant 26 pct Cr steel[J]. Metall. Trans., 1986, 17A: 691
[29] Zhang Y H, Li M, Godlewski L A, et al.Creep behavior at 1273 K (1000 ℃) in Nb-bearing austenitic heat-resistant cast steels developed for exhaust component applications[J]. Metall. Mater. Trans., 2016, 47A: 3289
[30] Zhang J S.High Temperature Deformation and Fracture of Materials [M]. Beijing: Science Press, 2007: 3(张俊善. 材料的高温变形与断裂 [M]. 北京: 科学出版社, 2007: 3)
[31] Michalska J, Sozańska M.Qualitative and quantitative analysis of σ and χ phases in 2205 duplex stainless steel[J]. Mater. Charact., 2006, 56: 355
[1] 冯强, 路松, 李文道, 张晓瑞, 李龙飞, 邹敏, 庄晓黎. γ' 相强化钴基高温合金成分设计与蠕变机理研究进展[J]. 金属学报, 2023, 59(9): 1125-1143.
[2] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[3] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[4] 李小琳, 刘林锡, 李雅婷, 杨佳伟, 邓想涛, 王海丰. 单一 MX 型析出相强化马氏体耐热钢力学性能及蠕变行为[J]. 金属学报, 2022, 58(9): 1199-1207.
[5] 韩林至, 牟娟, 周永康, 朱正旺, 张海峰. 热处理温度对Ti0.5Zr1.5NbTa0.5Sn0.2 高熵合金组织结构与力学性能的影响[J]. 金属学报, 2022, 58(9): 1159-1168.
[6] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.
[7] 彭子超, 刘培元, 王旭青, 罗学军, 刘健, 邹金文. 不同服役条件下FGH96合金的蠕变特征[J]. 金属学报, 2022, 58(5): 673-682.
[8] 杨志昆, 王浩, 张义文, 胡本芙. Ta含量对镍基粉末高温合金高温蠕变变形行为和性能的影响[J]. 金属学报, 2021, 57(8): 1027-1038.
[9] 张倪侦, 马昕迪, 耿川, 穆永坤, 孙康, 贾延东, 黄波, 王刚. Ag元素添加对Cu-Zr-Al基金属玻璃纳米压痕行为的影响[J]. 金属学报, 2021, 57(4): 567-574.
[10] 徐静辉, 李龙飞, 刘心刚, 李辉, 冯强. 热力耦合对一种第四代镍基单晶高温合金1100℃蠕变组织演变的影响[J]. 金属学报, 2021, 57(2): 205-214.
[11] 郭倩颖, 李彦默, 陈斌, 丁然, 余黎明, 刘永长. 高温时效处理对S31042耐热钢组织和蠕变性能的影响[J]. 金属学报, 2021, 57(1): 82-94.
[12] 刘天, 罗锐, 程晓农, 郑琦, 陈乐利, 王茜. 形成Al2O3表层的奥氏体不锈钢加速蠕变实验研究[J]. 金属学报, 2020, 56(11): 1452-1462.
[13] 吴静,刘永长,李冲,伍宇婷,夏兴川,李会军. 高Fe、Cr含量多相Ni3Al基高温合金组织与性能研究进展[J]. 金属学报, 2020, 56(1): 21-35.
[14] 胡斌,李树索,裴延玲,宫声凯,徐惠彬. <111>取向小角偏离对一种镍基单晶高温合金蠕变性能的影响[J]. 金属学报, 2019, 55(9): 1204-1210.
[15] 唐文书,肖俊峰,李永君,张炯,高斯峰,南晴. 再热恢复处理对蠕变损伤定向凝固高温合金γ′相的影响[J]. 金属学报, 2019, 55(5): 601-610.