Please wait a minute...
金属学报  2017, Vol. 53 Issue (8): 991-1000    DOI: 10.11900/0412.1961.2016.00582
  本期目录 | 过刊浏览 |
单晶Cu等通道转角挤压A路径形变特征及力学性能
郭廷彪1,2(), 李琦1, 王晨1, 张锋1, 贾智1,2
1 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室 兰州 730050
2 兰州理工大学有色金属合金及加工教育部重点实验室 兰州 730050
Deformation Characteristics and Mechanical Properties of Single Crystal Copper During Equal Channel Angular Pressing by Route A
Tingbiao GUO1,2(), Qi LI1, Chen WANG1, Feng ZHANG1, Zhi JIA1,2
1 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
2 Key Laboratory of Non-Ferrous Metal Alloys and Processing, Ministry of Education, Lanzhou University of Technology, Lanzhou 730050, China
引用本文:

郭廷彪, 李琦, 王晨, 张锋, 贾智. 单晶Cu等通道转角挤压A路径形变特征及力学性能[J]. 金属学报, 2017, 53(8): 991-1000.
Tingbiao GUO, Qi LI, Chen WANG, Feng ZHANG, Zhi JIA. Deformation Characteristics and Mechanical Properties of Single Crystal Copper During Equal Channel Angular Pressing by Route A[J]. Acta Metall Sin, 2017, 53(8): 991-1000.

全文: PDF(1572 KB)   HTML
  
摘要: 

采用XRD、EBSD和TEM技术对单晶高纯Cu (99.999%)经等通道转角挤压(ECAP) A路径过程中的形变织构进行了研究,测试了ECAP后单晶Cu的力学性能和导电性能,并分析了变形过程中织构演变机理及其对力学性能和导电性能的影响。结果表明:原始单晶Cu经2道次变形后,晶内出现了微小的等轴状形变结构;4道次变形后,形成了(110)取向一致的形变带结构;8道次变形后,单晶组织开始破碎,晶粒取向又逐渐趋于(111)面,形成了{111}<110>和{111}<112>织构及较弱的{001}<100>再结晶织构。中、低应变下,形成稳定取向的{hkl}<110>织构,可有效降低晶界对电子的散射作用,使电导率略有增加,同时有利于大幅度提高材料的加工硬化率。单晶Cu变形初始阶段形成了大量小角度晶界,随着应变的增加,小角度晶界逐渐向大角度晶界转变。由于变形过程中位错积聚及晶界密度增加对位错运动起到阻碍作用,3道次变形后,抗拉强度从168 MPa增加至400 MPa,延伸率从63%减小至27.3%,在随后的变形中抗拉强度增加缓慢,延伸率略有回升。前8道次变形中硬度不断增加,8道次变形后出现了再结晶,导致随后的挤压过程中硬度不稳定。

关键词 单晶Cu等通道转角挤压形变带织构力学性能    
Abstract

The single crystal copper has got more and more attention in the important areas of the national economy due to its good conductivity and thermal conductivity and elongation. Whereas the lower strength limits its application and strengthening methods of single crystal copper are of great concern. The traditional strengthening methods, such as solid solution strengthening, fine grain strengthening and deformation strengthening, can seriously damage the conductivity of single crystal copper. As an effective method for severe plastic deformation (SPD), equal channel angular pressing (ECAP) can effectively improve the material strength and keep its excellent performance by controlling the deformation and strain. Deformation texture of the single crystal copper (99.999%) during ECAP by A route was investigated by XRD, EBSD and TEM, the mechanical properties and conductivity were tested, and the mechanism of texture evolution and influence factors of mechanical and electrical properties during deformation process were analyzed. The results show that equiaxed deformation structure with small sizes appeared in single crystal copper after two passes extruded. After four passes of deformation, deformation band structure with same (110) orientation was formed. And the grain orientation of the highly refined grains gradually tended to the (111) surface, the {111}<110>, {111}<112> textures and the little {001}<100> recrystallization texture formed. The scattering of electrons by grain boundaries (GBs) can effectively get reduced and conductivity increases slightly, at the same time, the work hardening rate of the material is significantly improved when {hkl}<110> texture with stable orientation forms under medium and low strains. A large number of low-angle grain boundaries (LAGBs) are formed in the initial deformation stage of single crystal copper. With the increase of strain, the LAGBs gradually change to the high-angle grain boundaries (HAGBs). Dislocation accumulation and GB density increase that dislocation movement is obstructed during deformation process. The tensile strength increases from 168 MPa to 400 MPa, the elongation decreases from 63% to 27.3% after three passes deformation. With the extrusion process, the tensile strength increases slowly, whereas the elongation increases slightly. When the extrusion pass is less than eight times, hardness increases continuously, and recrystallization occurs after eighth passes extrusion that hardness tends to be unstable.

Key wordssingle crystal copper    equal channel angular pressing    deformation band    texture    mechanical property
收稿日期: 2016-12-30     
ZTFLH:  TG379  
基金资助:国家自然科学基金项目 No.51261016
作者简介:

作者简介 郭廷彪,男,1974年生,副教授,博士

图1  等通道转角挤压(ECAP)示意图
图2  单晶Cu经不同道次ECAP前后的EBSD取向图
图3  单晶Cu经不同道次ECAP后的取向差分布
图4  单晶Cu经4和8道次ECAP后的TEM像
图5  单晶Cu经不同道次ECAP前后的 XRD谱
图6  单晶Cu经不同道次ECAP前后的取向参数K
图7  单晶Cu经不同道次ECAP前后的极图
图8  单晶Cu经不同道次ECAP前后的晶粒取向分布函数(ODF)截面图
图9  单晶Cu和多晶Cu经不同道次ECAP前后的电导率
图10  挤压道次与抗拉强度及延伸率的关系
图11  挤压道次与硬度的关系
[1] Fukuda Y, Oh-Ishi K, Furukawa M, et al.Influence of crystal orientation on the processing of copper single crystals by ECAP[J]. J. Mater. Sci., 2007, 42: 1501
[2] Sun L X, Tao N R, Lu K.A high strength and high electrical conductivity bulk CuCrZr alloy with nanotwins[J]. Scr. Mater., 2015, 99: 73
[3] Lu L, Chen X H, Huang X X, et al.Revealing the maximum strength in nanotwinned copper[J]. China Basic Sci., 2010, 12(1): 16(卢磊, 陈先华, 黄晓旭等. 纳米孪晶纯铜的极值强度及纳米孪晶提高金属材料综合强韧性[J]. 中国基础科学, 2010, 12(1): 16)
[4] Gao L, Chen R S, Han E H.Effects of rare-earth elements Gd and Y on the solid solution strengthening of Mg alloys[J]. J. Alloys Compd., 2009, 481: 379
[5] Lu K, Lu L, Suresh S.Strengthening materials by engineering coherent internal boundaries at the nanoscale[J]. Science, 2009, 324: 349
[6] Ning Y T, Zhang X H, Wu Y J.Strain strengthening of Cu-Ag alloy in situ filamentary composites[J]. Chin. J. Nonferrous Met., 2007, 17: 68(宁远涛, 张晓辉, 吴跃军. Cu-Ag合金原位纤维复合材料的应变强化效应[J]. 中国有色金属学报, 2007, 17: 68)
[7] Pry R H, Hennig R W.On the use of electrical resistivity as a measure of plastic deformation in copper[J]. Acta Metall., 1954, 2: 318
[8] Lu L, Lu K.Metallic materials with nano-scale twins[J]. Acta Metall. Sin., 2010, 46: 1422(卢磊, 卢柯. 纳米孪晶金属材料[J]. 金属学报, 2010, 46: 1422)
[9] Lu L, You Z S.Plastic deformation mechanisms in nanotwinned metals[J]. Acta Metall. Sin., 2014, 50: 129(卢磊, 尤泽升. 纳米孪晶金属塑性变形机制[J]. 金属学报, 2014, 50: 129)
[10] Shen Y F, Lu L, Lu Q H, et al.Tensile properties of copper with nano-scale twins[J]. Scr. Mater., 2005, 52: 989
[11] Lu L, Shen Y F, Chen X H, et al.Ultrahigh strength and high electrical conductivity in copper[J]. Science, 2004, 304: 422
[12] Shih H, Yu C Y, Kao P W, et al.Microstructure and flow stress of copper deformed to large plastic strains[J]. Scr. Mater., 2001, 45: 793
[13] Valiev R Z, Islamgaliev R K, Alexandrov I V.Bulk nanostructured materials from severe plastic deformation[J]. Prog. Mater. Sci., 2000, 45: 103
[14] Tao N R, Lu K.Structured metallic materials via plastic deformation[J]. Acta Metall. Sin., 2014, 50: 141(陶乃镕, 卢柯. 纳米结构金属材料的塑性变形制备技术[J]. 金属学报, 2014, 50: 141)
[15] Zhu C C, Ma A B, Jiang J H, et al.Effect of ECAP combined cold working on mechanical properties and electrical conductivity of Conform-produced Cu-Mg alloys[J]. J. Alloys Compd., 2014, 582: 135
[16] Purcek G, Yanar H, Demirtas M, et al.Optimization of strength, ductility and electrical conductivity of Cu-Cr-Zr alloy by combining multi-route ECAP and aging[J]. Mater. Sci. Eng., 2016, A649: 114
[17] Wu S D, An X H, Han W Z, et al.Microstructure evolution and mechanical properties of fcc metallic materials subjected to equal channel angular pressing[J]. Acta Metall. Sin., 2010, 46: 257(吴世丁, 安祥海, 韩卫忠等. 等通道转角挤压过程中fcc金属的微观结构演化与力学性能[J]. 金属学报, 2010, 46: 257)
[18] Fukuda Y, Oh-Ishi K, Furukawa M, et al.Influence of crystal orientation on ECAP of aluminum single crystals[J]. Mater. Sci. Eng., 2006, A420: 79
[19] Guo T B, Ding Y T, Yuan X F, et al.Microstructure and orientation evolution of unidirectional solidification pure copper during ECAP[J]. Rare Met. Mater. Eng., 2011, 40: 171
[20] Iwahashi Y, Horita Z, Nemoto M, et al.An investigation of microstructural evolution during equal-channel angular pressing[J]. Acta Metall., 1997, 45: 4733
[21] Hu J, Lin D L, Wang Y.EBSD analyses of the microstructural evolution and CSL characteristic grain boundary of coarse-grained NiAl alloy during plastic deformation[J]. Acta Metall. Sin., 2009, 45: 652(胡静, 林栋梁, 王燕. EBSD技术分析大晶粒NiAl合金高温塑性变形组织演变与CSL特征晶界分布[J]. 金属学报, 2009, 45: 652)
[22] He Y B, Pan Q L, Qin Y J, et al.Microstructure and mechanical properties of ultra-fine grain ZK60 magnesium alloy processed by equal channel angular pressing[J]. Chin. J. Nonferrous Met., 2010, 20: 2274(何运斌, 潘清林, 覃银江等. 等通道角挤压制备细晶ZK60镁合金的组织与力学性能[J]. 中国有色金属学报, 2010, 20: 2274)
[23] Wen Y N, Zhang J M.Surface energy calculation of the bcc metals by using the MAEAM[J]. Computat. Mater. Sci., 2008, 42: 281
[24] Guo T B, Ding Y T, Yuan X F, et al.Grain orientation evolution and texture fluctuation effect of pure copper during equal channel angular pressing[J]. Chin. J. Nonferrous Met., 2011, 21: 384(郭廷彪, 丁雨田, 袁训锋等. 等通道角挤压中纯铜的晶粒取向演变及织构起伏效应[J]. 中国有色金属学报, 2011, 21: 384)
[25] Xu J, Li J W, Shan D B, et al.Microstructural evolution and micro/meso-deformation behavior in pure copper processed by equal-channel angular pressing[J]. Mater. Sci. Eng., 2016, A664: 114
[26] Segal V M.Equal channel angular extrusion: From macromechanics to structure formation[J]. Mater. Sci. Eng., 1999, 271: 322
[27] Yun X B, Song B Y, Chen L.Ultra-fine grain copper prepared by continuous equal channel angular press[J]. Chin. J. Nonferrous Met., 2006, 16: 1563(运新兵, 宋宝韫, 陈莉. 连续等径角挤压制备超细晶铜[J]. 中国有色金属学报, 2006, 16: 1563)
[28] Yamakov V, Wolf D, Salazar M, et al.Length-scale effects in the nucleation of extended dislocations in nanocrystalline Al by molecular-dynamics simulation[J]. Acta Metall., 2001, 49: 2713
[29] An X H, Wu S D, Zhang Z F.Influence of stacking fault energy on the microstructures, tensile and fatigue properties of nanostructured Cu-Al alloys[J]. Acta Metall. Sin., 2014, 50: 191(安祥海, 吴世丁, 张哲峰. 层错能对纳米晶Cu-Al合金微观结构、拉伸及疲劳性能的影响[J]. 金属学报, 2014, 50: 191)
[30] Zheng W W, Sun Z Q.The rotation of the B2-ordered Fe3Al single crystal during room temperature tensile[J]. Acta Metall. Sin., 2000, 36: 1161(郑为为, 孙祖庆. B2结构Fe3Al单晶在室温拉伸过程中的取向转动[J]. 金属学报, 2000, 36: 1161)
[1] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[6] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[10] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[11] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[12] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[13] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[14] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[15] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.