Please wait a minute...
金属学报  2017, Vol. 53 Issue (7): 861-868    DOI: 10.11900/0412.1961.2016.00569
  本期目录 | 过刊浏览 |
热迁移下Ni/Sn-xCu/Ni微焊点钎焊界面金属间化合物的演变
赵宁1(),邓建峰1,钟毅1,殷录桥2
1 大连理工大学材料科学与工程学院 大连 116024
2 上海大学新型显示技术及应用集成教育部重点实验室 上海 200072
Evolution of Interfacial Intermetallic Compounds in Ni/Sn-xCu/Ni Micro Solder Joints Under Thermomigration During Soldering
Ning ZHAO1(),Jianfeng DENG1,Yi ZHONG1,Luqiao YIN2
1 School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
2 Key Laboratory of Advanced Display and System Applications, Ministry of Education, Shanghai University, Shanghai 200072, China
全文: PDF(1251 KB)   HTML
  
摘要: 

研究了240 ℃,温度梯度为1045 ℃/cm的热迁移条件下Cu含量对Ni/Sn-xCu/Ni (x=0.3、0.7、1.5,质量分数,%)微焊点钎焊界面反应的影响。结果表明,在热迁移过程中微焊点发生了界面金属间化合物(IMC)的非对称生长和转变以及Ni基体的非对称溶解。在Ni/Sn-0.3Cu/Ni微焊点中,虽然界面IMC类型始终为初始的(Ni, Cu)3Sn4,但出现冷端界面IMC厚度明显大于热端的非对称生长现象。在Ni/Sn-0.7Cu/Ni和Ni/Sn-1.5Cu/Ni微焊点中,界面IMC类型逐渐由初始的(Cu, Ni)6Sn5转变为(Ni, Cu)3Sn4,且出现冷端滞后于热端的非对称转变现象;Ni/Sn-1.5Cu/Ni微焊点冷、热端发生IMC转变的时间均滞后于Ni/Sn-0.7Cu/Ni微焊点。通过分析微焊点冷、热端界面IMC生长所需Cu和Ni原子通量,确定Cu和Ni的热迁移方向均由热端指向冷端。微焊点中的Cu含量显著影响主热迁移元素的种类,进而影响冷、热端界面IMC的生长和转变规律。此外,热迁移促进了热端Ni原子向钎料中的扩散,加速了热端Ni基体的溶解,溶解到钎料中的Ni原子大部分迁移到冷端并参与界面反应。相反,热迁移显著抑制了冷端Ni原子的扩散,因此冷端Ni基体几乎不溶解。

关键词 Sn-xCu钎料热迁移微焊点界面反应金属间化合物    
Abstract

The effect of Cu content on the evolution of intermetallic compounds (IMCs) in Ni/Sn-xCu/Ni (x= 0.3, 0.7, 1.5, mass fraction, %) micro solder joints during soldering at 240 ℃ under a temperature gradient of 1045 ℃/cm was investigated. Asymmetrical growth and transformation of interfacial IMCs and asymmetrical dissolution of Ni substrate were clearly observed. In Ni/Sn-0.3Cu/Ni micro solder joints, though the interfacial IMC remained as the initial (Ni, Cu)3Sn4, asymmetrical IMC growth between cold and hot ends occurred, i.e., the (Ni, Cu)3Sn4 IMC at the cold end was obviously thicker than that at the hot end. In Ni/Sn-0.7Cu/Ni and Ni/Sn-1.5Cu/Ni micro solder joints, the interfacial IMC gradually transformed from the initial (Cu, Ni)6Sn5 into (Ni,Cu)3Sn4. Meanwhile, the transformation at the cold end lagged behind the hot end, namely asymmetrical transformation phenomenon occurred. Moreover, the transformations at the cold and hot ends in the Ni/Sn-1.5Cu/Ni micro solder joints both lagged behind those in the Ni/Sn-0.7Cu/Ni micro solder joints. Based on the analysis of the Cu and Ni atomic fluxes for the IMC growth at both cold and hot ends, the thermomigration (TM) direction was confirmed to be from the hot end towards the cold end. The Cu concentration in the micro solder joints had a significant effect on the main TM element, and thus affected the growth and transformation behavior of the interfacial IMCs at the two ends. In addition, TM promoted the diffusion of Ni atoms into solder at the hot end, which accelerated the dissolution of the hot end Ni substrate. Most of the dissolved Ni atoms migrated to the cold end and participated in interfacial reaction locally. On the contrary, TM inhibited the diffusion of Ni atoms at the hot end, resulting in no obvious dissolution of the cold end Ni substrate.

Key wordsSn-xCu solder    thermomigration    micro solder joint    interfacial reaction    intermetallic compound
收稿日期: 2016-12-22      出版日期: 2017-04-18
基金资助:国家自然科学基金项目No.51675080和新型显示技术及应用集成教育部重点实验室开放基金项目No.P201601

引用本文:

赵宁,邓建峰,钟毅,殷录桥. 热迁移下Ni/Sn-xCu/Ni微焊点钎焊界面金属间化合物的演变[J]. 金属学报, 2017, 53(7): 861-868.
Ning ZHAO,Jianfeng DENG,Yi ZHONG,Luqiao YIN. Evolution of Interfacial Intermetallic Compounds in Ni/Sn-xCu/Ni Micro Solder Joints Under Thermomigration During Soldering. Acta Metall, 2017, 53(7): 861-868.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2016.00569      或      http://www.ams.org.cn/CN/Y2017/V53/I7/861

图1  Ni/Sn-xCu/Ni微焊点及热迁移实验装置示意图
图2  微焊点液态钎料层的温度分布模拟结果
图3  浸焊后Ni/Sn-xCu/Ni微焊点微观组织的SEM像
图4  Ni/Sn-0.3Cu/Ni微焊点热台回流不同时间后微观组织的SEM像
图5  Ni/Sn-0.7Cu/Ni微焊点热台回流不同时间后微观组织的SEM像
图6  Ni/Sn-1.5Cu/Ni微焊点热台回流不同时间后微观组织的SEM像
图7  热迁移过程中Ni/Sn-xCu/Ni微焊点冷、热端界面金属间化合物(IMC)厚度随时间的变化
图8  Ni/Sn-xCu/Ni微焊点热台回流时Cu、Ni原子通量示意图
[1] Chen C, Hsiao H Y, Chang Y W, et al.Thermomigration in solder joints[J]. Mater. Sci. Eng., 2012, R73: 85
[2] Ouyang F Y, Jhu W C.Comparison of thermomigration behaviors between Pb-free flip chip solder joints and microbumps in three dimensional integrated circuits: Bump height effect[J]. J. Appl. Phys., 2013, 113: 043711
[3] Guo M Y, Lin C K, Chen C, et al.Asymmetrical growth of Cu6Sn5 intermetallic compounds due to rapid thermomigration of Cu in molten SnAg solder joints[J]. Intermetallics, 2012, 29: 155
[4] Huang A T, Gusak A M, Tu K N, et al.Thermomigration in SnPb composite flip chip solder joints[J]. Appl. Phys. Lett., 2006, 88: 141911
[5] Ouyang F Y, Jhu W C, Chang T C.Thermal-gradient induced abnormal Ni3Sn4 interfacial growth at cold side in Sn2.5Ag alloys for three-dimensional integrated circuits[J]. J. Alloys Compd., 2013, 580: 114
[6] Wang B, Wu F S, Wu Y P, et al.Microstructural evolution of the intermetallic compounds in the high density solder interconnects with reduced stand-off heights[J]. Solder. Surf. Mt. Technol., 2011, 23: 229
[7] Li X P, Zhou M B, Xia J M, et al.Effect of the cross-interaction on the formation and evolution of intermetallic compounds in Cu(Ni)/Sn-Ag-Cu/Cu(Ni)BGA structure solder joints[J]. Acta Metall. Sin., 2011, 47: 611
[7] (李勋平, 周敏波, 夏建民等. 界面耦合作用对Cu(Ni)/Sn-Ag-Cu/Cu(Ni)BGA焊点界面IMC形成与演化的影响[J]. 金属学报, 2011, 47: 611)
[8] Zhao N, Zhong Y, Huang M L, et al.Growth kinetics of Cu6Sn5 intermetallic compound at liquid-solid interfaces in Cu/Sn/Cu interconnects under temperature gradient[J]. Sci. Rep., 2015, 5: 13491
[9] Gu X, Yung K C, Chan Y C, et al.Thermomigration and electromigration in Sn8Zn3Bi solder joints[J]. J. Mater. Sci. Mater. Electron., 2011, 22: 217
[10] Chen W Y, Chiu T C, Lin K L, et al.Electrorecrystallization of intermetallic compound in the Sn0.7Cu solder joint[J]. Intermetallics, 2012, 26: 40
[11] Zhao N, Deng J F, Zhong Y, et al.Abnormal intermetallic compound evolution in Ni/Sn/Ni and Ni/Sn-9Zn/Ni micro solder joints under thermomigration[J]. J. Electron. Mater., 2017, 46: 1931
[12] Zhao N, Pan X M, Ma H T, et al.Study of the liquid structure of Sn-Cu solders[J]. Acta Metall. Sin., 2008, 44: 467
[12] (赵宁, 潘学民, 马海涛等. Sn-Cu钎料液态结构的研究[J]. 金属学报, 2008, 44: 467)
[13] Chen W T, Ho C E, Kao C R.Effect of Cu concentration on the interfacial reactions between Ni and Sn-Cu solders[J]. J. Mater. Res., 2002, 17: 263
[14] Chiu M Y, Wang S S, Chuang T H.Intermetallic compounds formed during interfacial reactions between liquid Sn-8Zn-3Bi solders and Ni substrates[J]. J. Electron. Mater., 2002, 31: 494
[15] Ho C E, Tsai R Y, Lin Y L, et al.Effect of Cu concentration on the reactions between Sn-Ag-Cu solders and Ni[J]. J. Electron. Mater., 2002, 31: 584
[16] Chen W T, Ho C E, Kao C R.Effect of Cu concentration on the interfacial reactions between Ni and Sn-Cu solders[J]. J. Mater. Res., 2002, 17: 263
[17] Chen S W, Wang C H.Interfacial reactions of Sn-Cu/Ni couples at 250 ℃[J]. J. Mater. Res., 2006, 21: 2270
[18] Peralta-Martinez M V, Wakeham W A. Thermal conductivity of liquid tin and indium[J]. Int. J. Thermophys., 2001, 22: 395
[19] Yu D Q, Wu C M L, He D P, et al. Effects of Cu contents in Sn-Cu solder on the composition and morphology of intermetallic compounds at a solder/Ni interface[J]. J. Mater. Res., 2005, 20: 2205
[20] Zhao N, Zhong Y, Huang M L, et al.Dissolution and precipitation kinetics of Cu6Sn5 intermetallics in Cu/Sn/Cu micro interconnects under temperature gradient[J]. Intermetallics, 2016, 79: 28
[21] Qu L, Zhao N, Ma H T, et al.In situ study on the effect of thermomigration on intermetallic compounds growth in liquid-solid interfacial reaction[J]. J. Appl. Phys., 2014, 115: 204907
[22] Yang Y S, Yang C J, Ouyang F Y.Interfacial reaction of Ni3Sn4 intermetallic compound in Ni/SnAg solder/Ni system under thermomigration[J]. J. Alloys Compd., 2016, 674: 331
[23] Zhao N, Zhong Y, Huang M L, et al.In situ study on interfacial reactions of Cu/Sn-9Zn/Cu solder joints under temperature gradient[J] J. Alloys Compd., 2016, 682: 1
[24] Laurila L, Vuorinen V, Kivilahti J K.Analyses of interfacial reactions at different levels of interconnection[J]. Mater. Sci. Semicond. Proc., 2004, 7: 307
[25] Wang C H, Lai W H, Chen S W.Dissolution and interfacial reactions of (Cu,Ni)6Sn5 intermetallic compound in molten Sn-Cu-Ni solders[J]. J. Electron. Mater., 2014, 43: 195
[1] 于宣, 张志豪, 谢建新. 不同Ce含量Fe-6.5%Si合金的组织、有序结构和中温拉伸塑性[J]. 金属学报, 2017, 53(8): 927-936.
[2] 王大伟,修世超. 焊接温度对碳钢/奥氏体不锈钢扩散焊接头界面组织及性能的影响[J]. 金属学报, 2017, 53(5): 567-574.
[3] 张志杰,黄明亮. Cu/Sn-52In/Cu微焊点液-固电迁移行为研究[J]. 金属学报, 2017, 53(5): 592-600.
[4] 周丽,崔超,贾清,马英石. γ-TiAl金属间化合物铣削加工实验与有限元模拟[J]. 金属学报, 2017, 53(4): 505-512.
[5] 靳鹏,隋然,李富祥,俞伟元,林巧力. 熔融6061/4043铝合金在TC4钛合金表面的反应润湿[J]. 金属学报, 2017, 53(4): 479-486.
[6] 刘洪喜,李正学,张晓伟,谭军,蒋业华. 热处理对钛合金表面激光原位合成高铌Ti-Al金属间化合物涂层高温抗氧化行为的影响[J]. 金属学报, 2017, 53(2): 201-210.
[7] 刘积厚,赵洪运,李卓霖,宋晓国,董红杰,赵一璇,冯吉才. Cu/Sn/Cu超声-TLP接头的显微组织与力学性能[J]. 金属学报, 2017, 53(2): 227-232.
[8] 王国田, 丁宏升, 陈瑞润, 郭景杰, 傅恒志. 电流强度对冷坩埚定向凝固Ni3Al金属间化合物微观组织的影响[J]. 金属学报, 2017, 53(11): 1461-1468.
[9] 袁训华, 张启富. 22MnB5热成形钢奥氏体化时热镀Al-10%Si镀层组织的演化[J]. 金属学报, 2017, 53(11): 1495-1503.
[10] 毕宗岳,杨军,刘海璋,张万鹏,杨耀彬,田磊,黄晓江. TA1/X65复合板焊接工艺及焊缝组织和性能研究*[J]. 金属学报, 2016, 52(8): 1017-1024.
[11] 骆良顺,刘桐,张延宁,苏彦庆,郭景杰,傅恒志. 定向凝固Al-Y合金组织演化规律及小平面相生长*I. Al-15%Y过共晶合金组织演化规律[J]. 金属学报, 2016, 52(7): 859-865.
[12] 刘桐,骆良顺,张延宁,苏彦庆,郭景杰,傅恒志. 定向凝固Al-Y合金组织演化规律及小平面相生长*II. Al-53%Y包晶合金组织演化规律[J]. 金属学报, 2016, 52(7): 866-874.
[13] 刘力恒,车淳山,孔纲,卢锦堂,张双红. 热镀Zn-0.2%Al镀层中Fe-Al抑制层失稳机理及其热力学评估*[J]. 金属学报, 2016, 52(5): 614-624.
[14] 潘峰,崔丽,钱伟,贺定勇,魏世忠. 铝合金/不锈钢双光束激光深熔焊接接头组织及力学性能*[J]. 金属学报, 2016, 52(11): 1388-1394.
[15] 王玉敏, 张国兴, 张旭, 杨青, 杨丽娜, 杨锐. 连续SiC纤维增强钛基复合材料研究进展*[J]. 金属学报, 2016, 52(10): 1153-1170.