Please wait a minute...
金属学报  2017, Vol. 53 Issue (9): 1047-1054    DOI: 10.11900/0412.1961.2016.00561
  本期目录 | 过刊浏览 |
TC17合金超高周疲劳裂纹萌生机理
刘汉青1, 何超2, 黄志勇1(), 王清远1,2
1四川大学空天科学与工程学院 成都 610065
2成都大学建筑与土木工程学院 成都 610106
Very High Cycle Fatigue Failure Mechanism of TC17 Alloy
Hanqing LIU1, Chao HE2, Zhiyong HUANG1(), Qingyuan WANG1,2
1 School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China
2 School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China
全文: PDF(6606 KB)   HTML
  
摘要: 

通过实验研究了2种频率(110 Hz和20 kHz)循环载荷作用下航空发动机叶片材料TC17合金的超高周疲劳失效行为,分析了不同失效形式下的裂纹萌生机理。结果表明,TC17合金在2种实验载荷频率下均存在表面和内部萌生裂纹诱发疲劳失效2种失效形式,表面萌生裂纹诱发的疲劳失效主要是由加工缺陷和循环载荷作用下试样表面滑移处应力集中引起的横向裂纹所致,内部萌生裂纹诱发的疲劳失效是由循环载荷作用下材料初生α相的滑移断裂所致。失效机理的不同使得材料的应力-疲劳寿命(S-N)曲线呈双线性,载荷频率对TC17合金的裂纹萌生形式和萌生机理的影响不显著。建立了基于薄弱取向晶粒区域尺寸的疲劳强度预测模型,模型预测值与实验值吻合较好。

关键词 TC17合金超高周疲劳失效机理滑移断裂    
Abstract

Titanium alloys have been widely used in bearing force components in aeronautical structures, such as blades and beams to withstand the high frequency dynamic loads, which requires an outstanding fatigue resistance performance in very high cycle regime during their service life. In this work, very high cycle fatigue failure property of TC17 alloy used as aircraft engine blade material was studied by ultrasonic fatigue test and electromagnetic resonance fatigue test under 110 Hz and 20 kHz sinusoidal load, and crack initiation mechanism of different failure mode was analyzed. The results showed that, fatigue failure modes of TC17 alloy could be divided into surface induced failure and interior induced failure. Surface induced failure was caused by the machine defect and surface slide trace that triggered by the asymmetric loading. Interior induced failure was caused by slid fracture of primary α phase under asymmetric loading. Fatigue resistance of TC17 alloy was influenced by the fatigue crack initiation mechanism but concerned little about the loading frequency. The variation of the fatigue failure mechanism resulted in the S-N curves presenting bilinear. A fatigue strength predicted model is established based on the parameter of the weak crystal orientation area, which is in good agreement with the fatigue test result.

Key wordsTC17 alloy    very high cycle fatigue    fatigue failure mechanism    slip fracture
收稿日期: 2016-12-15      出版日期: 2017-06-13
:  O346.2  
基金资助:国家自然科学基金项目No.11372201
作者简介:

作者简介 刘汉青,男,1991年生,博士

引用本文:

刘汉青, 何超, 黄志勇, 王清远. TC17合金超高周疲劳裂纹萌生机理[J]. 金属学报, 2017, 53(9): 1047-1054.
Hanqing LIU, Chao HE, Zhiyong HUANG, Qingyuan WANG. Very High Cycle Fatigue Failure Mechanism of TC17 Alloy. Acta Metall, 2017, 53(9): 1047-1054.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2016.00561      或      http://www.ams.org.cn/CN/Y2017/V53/I9/1047

图1  疲劳试样几何尺寸参数
图2  热处理后TC17合金的显微组织SEM像
图3  TC17合金疲劳试样最小横截面处沿半径从表面至中心的显微硬度
图4  TC17合金在110 Hz和20 kHz频率正弦式循环载荷作用下的疲劳寿命实验结果
图5  2种载荷频率下TC17合金表面萌生裂纹诱发失效试样断口形貌的SEM像
图6  2种载荷频率下TC17合金内部萌生裂纹诱发失效试样断口形貌的SEM像
图7  TC17合金试样表面滑移线及横向裂纹
图8  滑移线对局部应力分布的影响示意图[19]
图9  TC17合金试样表面萌生裂纹形貌
图10  TC17合金试样裂纹萌生区小平面形貌
图11  内部萌生裂纹萌生区侧视图
图12  TC17合金疲劳寿命与萌生区形貌的关系
图13  裂纹萌生区面积与萌生深度的关系
图14  疲劳强度预测值与实验值之间的相对误差
[1] Sakai T, Sato Y, Nagano Y, et al.Effect of stress ratio on long life fatigue behavior of high carbon chromium bearing steel under axial loading[J]. Int. J. Fatigue, 2006, 28: 1547
[2] Furuya Y, Takeuchi E.Gigacycle fatigue properties of Ti-6Al-4V alloy under tensile mean stress[J]. Mater. Sci. Eng., 2014, A598: 135
[3] Schuller R, Karr U, Irrasch D, et al.Mean stress sensitivity of spring steel in the very high cycle fatigue regime[J]. J. Mater. Sci., 2015, 50: 5514
[4] Liu X L, Sun C Q, Hong Y S.Effects of stress ratio on high-cycle and very-high-cycle fatigue behavior of a Ti-6Al-4V alloy[J]. Mater. Sci. Eng., 2015, A622: 228
[5] Mughrabi H.On ‘multi-stage’ fatigue life diagrams and the relevant life-controlling mechanisms in ultrahigh-cycle fatigue[J]. Fatigue Fract. Eng. Mater. Struct., 2002, 25: 755
[6] Lei Z Q, Hong Y S, Xie J J, et al.Effects of inclusion size and location on very-high-cycle fatigue behavior for high strength steels[J]. Mater. Sci. Eng., 2012, A558: 234
[7] Marines I, Dominguez G, Baudry G, et al.Ultrasonic fatigue tests on bearing steel AISI-SAE 52100 at frequency of 20 and 30 kHz[J]. Int. J. Fatigue, 2003, 25: 1037
[8] Wang Q Y, Bathias C, Kawagoishi N, et al.Effect of inclusion on subsurface crack initiation and gigacycle fatigue strength[J]. Int. J. Fatigue, 2002, 24: 1269
[9] Phung N L, Favier V, Ranc N, et al.Very high cycle fatigue of copper: evolution, morphology and locations of surface slip markings[J]. Int. J. Fatigue, 2014, 63: 68
[10] Stanzl-Tschegg S E, Sch?nbauer B. Mechanisms of strain localization, crack initiation and fracture of polycrystalline copper in the VHCF regime[J]. Int. J. Fatigue, 2010, 32: 886.
[11] Huang Z Y, Liu H Q, Wang C, et al.Fatigue life dispersion and thermal dissipation investigations for titanium alloy TC17 in very high cycle regime[J]. Fatigue Fract. Eng. Mater. Struct., 2015, 38: 1285
[12] Bantounas I, Dye D, Lindley T C.The role of microtexture on the faceted fracture morphology in Ti-6Al-4V subjected to high-cycle fatigue[J]. Acta Mater., 2010, 58: 3908
[13] Jha S K, Szczepanski C J, John R, et al.Deformation heterogeneities and their role in life-limiting fatigue failures in a two-phase titanium alloy[J]. Acta Mater., 2015, 82: 378
[14] Efstathiou C, Sehitoglu H, Lambros J.Multiscale strain measurements of plastically deforming polycrystalline titanium: Role of deformation heterogeneities[J]. Int. J. Plast., 2010, 26: 93
[15] Drugan W J, Willis J R.A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites[J]. J. Mech. Phys. Solids, 1996, 44: 497
[16] Gusev A A.Representative volume element size for elastic composites: a numerical study[J]. J. Mech. Phys. Solids, 1997, 45: 1449
[17] Ren Z Y, Zheng Q S.Effects of grain sizes, shapes, and distribution on minimum sizes of representative volume elements of cubic polycrystals[J]. Mech. Mater., 2004, 36: 1217
[18] Ranganathan S I, Ostoja-Starzewski M.Scale-dependent homogenization of inelastic random polycrystals[J]. J. Appl. Mech., 2008, 75: 883
[19] Stroh A N.The formation of cracks as a result of plastic flow[J]. Proc. R. Soc. London, 1954, 223: 404
[20] Echlin M L P, Stinville J C, Miller V M, et al. Incipient slip and long range plastic strain localization in microtextured Ti-6Al-4V titanium[J]. Acta Mater., 2016, 114: 164
[21] Britton T B, Birosca S, Preuss M, et al.Electron backscatter diffraction study of dislocation content of a macrozone in hot-rolled Ti-6Al-4V alloy[J]. Scr. Mater., 2010, 62: 639
[22] Bridier F, Villechaise P, Mendez J.Slip and fatigue crack formation processes in an α/β titanium alloy in relation to crystallographic texture on different scales[J]. Acta Mater., 2008, 56: 3951
[23] Wang Q Y, Berard J Y, Rathery S, et al.Technical note High-cycle fatigue crack initiation and propagation behaviour of high-strength sprin steel wires[J]. Fatigue Fract. Eng. Mater. Struct., 2003, 22: 673
[24] Hong Y S, Lei Z Q, Sun C Q, et al.Propensities of crack interior initiation and early growth for very-high-cycle fatigue of high strength steels[J]. Int. J. Fatigue, 2014, 58: 144
[25] Yoshinaka F, Nakamura T, Takaku K.Effects of vacuum environment on small fatigue crack propagation in Ti-6Al-4V[J]. Int. J. Fatigue, 2016, 91: 29
[26] Sugano M, Kanno S, Satake T.Fatigue behavior of titanium in vacuum[J]. Acta Metall., 1989, 37: 1811
[27] Murakam Y, Nomoto T, Ueda T.Factors influencing the mechanism of superlong fatigue failure in steels[J]. Fatigue Fract. Eng. Mater. Struct., 1999, 22: 581
[28] Murakami Y, Endo M.Effects of defects, inclusions and in homogeneities on fatigue strength[J]. Int. J. Fatigue, 1994, 16: 163
[1] 刘小龙,孙成奇,周砚田,洪友士. 微结构和应力比对Ti-6Al-4V高周和超高周疲劳行为的影响*[J]. 金属学报, 2016, 52(8): 923-930.
[2] 朱莉娜,邓彩艳,王东坡,胡绳荪. 表面粗糙度对Ti-6Al-4V合金超高周疲劳性能的影响*[J]. 金属学报, 2016, 52(5): 583-591.
[3] 张永健 惠卫军 项金钟 董瀚 翁宇庆. 晶粒尺寸对42CrMoVNb钢超高周疲劳性能的影响[J]. 金属学报, 2009, 45(7): 880-886.
[4] 洪友士 赵爱国 钱桂安. 合金材料超高周疲劳行为的基本特征和影响因素[J]. 金属学报, 2009, 45(7): 769-780.
[5] 钱桂安 洪友士. 环境介质对40Cr结构钢高周和超高周疲劳行为的影响[J]. 金属学报, 2009, 45(11): 1356-1363.
[6] 李永德; 杨振国; 李守新; 柳洋波; 陈树铭 . GCr15轴承钢超高周疲劳性能与夹杂物相关性[J]. 金属学报, 2008, 44(8): 968-972 .
[7] 李永德; 李守新; 杨振国; 柳洋波; 翁宇庆; 惠卫军; 戎利建 . 氢对高强弹簧钢50CrV4超高周疲劳性能的影响[J]. 金属学报, 2008, 44(1): 64-68 .
[8] 左景辉; 王中光; 韩恩厚 . Ti-6Al-4V合金的超高周疲劳行为[J]. 金属学报, 2007, 43(7): 705-709 .
[9] 姚卫星; 郭盛杰 . LC4CS铝合金的超高周疲劳寿命分布[J]. 金属学报, 2007, 43(4): 399-403 .
[10] 聂义宏; 惠卫军; 傅万堂; 翁宇庆; 董瀚 . 中碳高强度弹簧钢NHS1超高周疲劳破坏行为[J]. 金属学报, 2007, 43(10): 1031-1036 .
[11] 张继明; 杨振国; 李守新; 李广义; 惠卫军; 翁宇庆 . 汽车用高强度弹簧钢54SiCrV6和54SiCr6的超高周疲劳行为[J]. 金属学报, 2006, 42(3): 259-264 .
[12] 李云卿;唐祥云;马莒生;黄乐. 62Sn─36Pb─2AgSMT封装焊点的等温剪切低周疲劳特征[J]. 金属学报, 1994, 30(4): 164-169.