Please wait a minute...
金属学报  2017, Vol. 53 Issue (8): 897-906    DOI: 10.11900/0412.1961.2016.00559
  本期目录 | 过刊浏览 |
AA 7055铝合金时效析出过程的小角度X射线散射定量表征
陈军洲1,2(), 吕良星3, 甄良3, 戴圣龙1,2
1 北京航空材料研究院铝合金研究所 北京 100095
2 北京市先进铝合金材料及应用工程技术研究中心 北京 100095
3 哈尔滨工业大学材料科学与工程学院 哈尔滨 150001
Quantitative Characterization on the Precipitation of AA 7055 Aluminum Alloy by SAXS
Junzhou CHEN1,2(), Liangxing LV3, Liang ZHEN3, Shenglong DAI1,2
1 Institute of Aluminum Alloy, Beijing Institute of Aeronautical Materials, Beijing 100095, China
2 Beijing Engineering Research Center of Advanced Aluminum Alloys and Applications, Beijing 100095, China
3 School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
引用本文:

陈军洲, 吕良星, 甄良, 戴圣龙. AA 7055铝合金时效析出过程的小角度X射线散射定量表征[J]. 金属学报, 2017, 53(8): 897-906.
Junzhou CHEN, Liangxing LV, Liang ZHEN, Shenglong DAI. Quantitative Characterization on the Precipitation of AA 7055 Aluminum Alloy by SAXS[J]. Acta Metall Sin, 2017, 53(8): 897-906.

全文: PDF(1518 KB)   HTML
  
摘要: 

利用小角度X射线散射(SAXS)技术系统、定量地研究了AA 7055铝合金在120和160 ℃时效过程中析出相的演变规律。结果表明,在120 ℃时效时,随时效时间延长析出相半径不断增加,时效5 h后半径基本稳定,约为3.3 nm,且尺寸分布基本不变;析出相的体积分数随着时效时间的延长不断增加,由时效5 h时的2.4%增加到时效60 h时的5.2%。在160 ℃时效时,随时效时间延长析出相半径不断增加,由时效0.5 h时的3.1 nm增加到时效72 h时的11.7 nm,尺寸分布范围也随着时效时间的延长而逐渐增加;析出相的体积分数随着时效时间的延长先不断增加,由时效0.5 h时的1.4%增加到时效16 h时的5.4%,时效16 h后趋于平衡。在120和160 ℃时效时,析出相均属于轴比介于0.2~0.3之间的扁椭球状,即为盘状。

关键词 AA 7055铝合金时效析出小角度X射线散射定量表征    
Abstract

AA 7055 aluminum alloy is a newly advanced Al-Zn-Mg-Cu alloy. It has been wide applied in aviation and aerospace field due to its attractive combined properties, such as high strength, high fracture toughness, good resistance to the growth of fatigue cracks and good stress corrosion resistance, and so on. It is generally believed that the optimum ageing precipitates are responsible for these good properties. However, the detailed information, such as size and its distribution, volume fraction, and morphology of precipitate in this alloy is still not clear. Although TEM is used to determine these information, the results are mostly qualitative. Small angle X-ray scattering (SAXS) provides a direct technique to determine the size, morphology and volume fraction of nano-scale particles and the sampling size is much larger than that in TEM. In this work, the evolution of the precipitates during ageing at 120 and 160 ℃ in AA 7055 aluminum alloy were investigated systematically and quantitatively by SAXS technique. The results show that, when ageing at 120 ℃, the average radius of the precipitates increases with increasing the ageing time. After ageing for 5 h and later, the average radius of the precipitates is 3.3 nm, and its distribution almost keeps stably. The volume fraction of the precipitates is also increased with increasing the ageing time. When ageing from 5 h to 60 h, the volume fraction increases from 2.4% to 5.2%. When ageing at 160 ℃, however, the average radius of the precipitates increases from 3.1 nm to 11.7 nm with increasing the ageing time from 0.5 h to 72 h. The volume fraction of the precipitates increases from 1.4% to 5.4% with increasing the ageing time from 0.5 h to 16 h. After ageing for 16 h and later, the volume fraction of the precipitates keeps stably. Both ageing at 120 and 160 ℃, the morphology of the precipitates is similar to a flat ellipsoid with an axis ratio between 0.2 and 0.3. Based on these quantitative results of the precipitates, the strength models during ageing will be built possibility.

Key wordsAA 7055 aluminum alloy    ageing precipitation    SAXS    quantitative characterization
收稿日期: 2016-12-13     
ZTFLH:  TG146.2  
作者简介:

作者简介 陈军洲,男,1980年生,高级工程师,博士

图1  AA 7055铝合金时效不同时间后的SAXS曲线
图2  AA 7055铝合金120 ℃时效不同时间后在小角区域的Guinier曲线
图3  AA 7055铝合金160 ℃时效不同时间后在小角区域的Guinier曲线
图4  AA 7055铝合金不同温度时效不同时间后析出相的回转半径RG
图5  不同轴比时椭球体理论散射曲线
图6  AA 7055铝合金120 ℃时效不同时间后不同轴比析出相粒子的理论散射曲线和实验曲线对比
图7  AA 7055铝合金160 ℃时效不同时间后不同轴比析出相粒子的理论散射曲线和实验曲线对比
图8  AA 7055铝合金不同温度时效不同时间后析出相的半径R
图9  AA 7055 铝合金120 ℃时效不同时间的Porod曲线以及分段散射曲线
t / h Kp / 10-5 Qh / 10-5 RP μ σ2
5 2.05 3.32 1.55 0.89 2.57
9 3.29 5.03 1.46 0.84 2.56
12 3.32 5.52 1.59 0.91 2.57
16 3.94 6.29 1.52 0.88 2.56
24 3.93 6.52 1.58 0.91 2.58
40 4.23 6.89 1.56 0.95 2.43
48 4.00 6.65 1.59 0.94 2.50
60 4.43 7.21 1.55 0.89 2.56
表1  AA 7055铝合金120 ℃时效不同时间后与析出相尺寸分布有关的参数
图10  AA 7055 铝合金120 ℃时效不同时间的析出相半径对数正态分布p(R)
图11  AA 7055 铝合金160 ℃时效不同时间的Porod曲线以及分段散射曲线
图12  AA 7055 铝合金160 ℃时效不同时间的析出相半径对数正态分布p(R)
t / h Kp / 10-5 Qh / 10-5 RP μ σ2
0.5 1.54 1.94 1.20 0.61 2.83
5 2.05 4.00 1.75 0.97 2.64
7 2.18 5.21 2.28 1.35 2.50
12 2.20 6.12 2.66 1.54 2.56
16 2.56 7.40 2.76 1.56 2.60
24 2.29 7.50 3.13 1.73 2.65
48 1.53 6.88 4.28 2.38 2.64
60 1.48 7.52 4.86 2.73 2.62
表2  AA7055铝合金160 ℃时效不同时间后与析出相尺寸分布有关的参数
图13  AA 7055铝合金时效过程中析出相体积分数的变化规律
[1] Deschamps A, Livet F, Bréchet Y.Influence of predeformation on ageing in an Al-Zn-Mg alloy——I. Microstructure evolution and mechanical properties[J]. Acta Mater., 1998, 47: 281
[2] Ferragut R, Somoza A, Tolley A.Microstructural evolution of 7012 alloy during the early stages of artificial ageing[J]. Acta Mater., 1999, 47: 4355
[3] Li X Z, Hansen V, Gj?nnes J, et al.HREM study and structure modeling of the η′ phase, the hardening precipitates in commercial Al-Zn-Mg alloys[J]. Acta Mater., 1999, 47: 2651
[4] Berg L K, Gj?nnes J, Hansen V, et al.GP-zones in Al-Zn-Mg alloys and their role in artificial aging[J]. Acta Mater., 2001, 49: 3443
[5] Sha G, Cerezo A.Early-stage precipitation in Al-Zn-Mg-Cu alloy (7050)[J]. Acta Mater., 2004, 52: 4503
[6] Fan X G.Study on the microstructures and mechanical properties and the fracture behavior of the Al-Zn-Mg-Cu-Zr alloys [D]. Harbin: Harbin Institute of Technology, 2007(樊喜刚. Al-Zn-Mg-Cu-Zr合金组织性能和断裂行为的研究 [D]. 哈尔滨: 哈尔滨工业大学, 2007)
[7] Wang D, Ma Z Y.Investigation of post-clod rolling aging processes on solutionized 7050 aluminum alloy[J]. Acta Metall. Sin., 2010, 46: 581(王东, 马宗义. 固溶处理后冷轧变形7050铝合金时效工艺研究[J]. 金属学报, 2010, 46: 581)
[8] Wang Y L, Pan Q L, Wei L L, et al.Effect of retrogression and reaging treatment on the microstructure and fatigue crack growth behavior of 7050 aluminum alloy thick plate[J]. Mater. Des., 2014, 55: 857
[9] Li H, Wang Z X, Miao F F, et al.Effect of the thermo-mechanical treatment of pre-ageing, cold-rolling and re-ageing on microstructures and mechanical properties of 6061 Al alloy[J]. Acta Metall. Sin., 2014, 50: 1244(李海, 王芝秀, 苗芬芬等. 预时效+冷轧变形+再时效对6061铝合金微观组织和力学性能的影响[J]. 金属学报, 2014, 50: 1244)
[10] Li M H, Yang Y Q, Huang B, et al.In situ HRTEM observation of electron-irradiation-induced amorphization and dissolution of the E (Al18Cr2Mg3) Phase in 7475 Al Alloy[J]. Acta Metall. Sin.(Engl. Lett.), 2015, 28: 147
[11] Du Z W, Sun Z M, Shao B L, et al.Quantitative evaluation of precipitates in an Al-Zn-Mg-Cu alloy after isothermal aging[J]. Mater. Character., 2006, 56: 121
[12] Du Z W.Precipitation and strengthening of 7000 serials and their Li containing aluminum alloys [D]. Beijing: Beijing University of Aeronautics and Astronautics, 2005(杜志伟. Al-Zn-Mg-Cu及其含Li合金沉淀析出过程显微结构演化的研究 [D]. 北京: 北京航空航天大学, 2005)
[13] Wei F, Li J S, Zhou T T, et al.Influence of lithium on the kinetics of phase transformation in 7000 series aluminum alloy by SAXS investigation[J]. Acta Aeronaut. Astronaut. Sin., 2008, 29: 1037(魏芳, 李金山, 周铁涛等. 用SAXS研究锂对7000系铝合金相变动力学的影响[J]. 航空学报, 2008, 29: 1037)
[14] Liu J. Advanced aluminium and hybrid aerostructures for future aircraft [J]. Mater. Sci. Forum, 2006, 519-521: 1233
[15] Cong F G, Zhao G, Tian N, et al.Research progress and development trend of strengthening-toughening of ultra-high strength 7××× aluminum alloy[J]. Light Alloy Fabr. Technol., 2012, 40(10): 23(丛福官, 赵刚, 田妮等. 7×××系超高强铝合金的强韧化研究进展及发展趋势[J]. 轻合金加工技术, 2012, 40(10): 23)
[16] Srivatsan T S, Sriram S, Veeraraghavan D, et al.Microstructure, tensile deformation and fracture behaviour of aluminium alloy 7055[J]. J. Mater. Sci., 1997, 32: 2883
[17] Chen K H, Liu W H, Liu Y Z.Effect of promotively-solutionizing heat treatment on the mechanical properties and fracture behavior of Al-Zn-Mg-Cu alloys[J]. Acta Metall. Sin., 2001, 37: 29(陈康华, 刘红卫, 刘允中. 强化固溶对Al-Zn-Mg-Cu合金力学性能和断裂行为的影响[J]. 金属学报, 2001, 37: 29)
[18] Liu S D, Li C B, Deng Y L, et al.Influence of aging on the hardenability of 7055 aluminum alloy thick plate[J]. Acta Metall. Sin., 2012, 48: 343(刘胜胆, 李承波, 邓运来等. 时效对7055铝合金厚板淬透性的影响[J]. 金属学报, 2012, 48: 343)
[19] Chen J Z, Zhen L, Shao W Z, et al.Through-thickness texture gradient in AA 7055 aluminum alloy[J]. Mater. Lett., 2008, 62: 88
[20] Zhen L, Chen J Z, Yang S J, et al.Development of microstructures and texture during cold rolling in AA 7055 aluminum alloy[J]. Mater. Sci. Eng., 2009, A504: 55
[21] Mondal C, Mukhopadhyay A K.On the nature of T (Al2Mg3Zn3) and S (Al2CuMg) phases present in as-cast and annealed 7055 aluminum alloy[J]. Mater. Sci. Eng., 2005, A391: 367
[22] Chen J Z, Zhen L, Yang S J, et al.Investigation of precipitation behavior and related hardening in AA 7055 aluminum alloy[J]. Mater. Sci. Eng., 2009, A500: 34
[23] Guinier A.Small-Angle Scattering of X-ray[M]. New York: Weily, 1955: 1
[24] Meng Z F.Theory and Application of Small Angle X-ray Scattering [M]. Changchun: Jilin Science and Techonology Press, 1996: 24(孟昭富. 小角X射线散射理论及应用 [M]. 长春: 吉林科学技术出版社, 1996: 24)
[25] Meng Z F.Determination of mopholohy and size of precipitation in LC4 aluminum alloy by small angle X-ray scattering[J]. Chin. Sci. Bul., 1988, 22: 1723(孟昭富. 小角X射线散射测定LC4铝合金时效析出的相形状和尺寸[J]. 科学通报, 1988, 22: 1723)
[26] Xu Y.Investigation of the size distribution of nanoparticles by small angle X-ray scattering[J]. Phys. Exp., 2002, 22(8): 38(徐跃. 用小角X射线散射研究纳米粒子的粒度分布[J]. 物理实验, 2002, 22(8): 38)
[27] Guyot P, Cottignies L.Precipitation kinetics, mechanical strength and electrical conductivity of AlZnMgCu alloys[J]. Acta Mater., 1996, 44: 4161
[28] Luzzati V, Witz J, Nicolaieff A.Détermination de la masse et des dimensions des protéines en solution par la diffusion centrale des rayons X mesurée à l'échelle absolue: Exemple du lysozyme[J]. J. Mol. Biol., 1961, 3: 367
[29] Zhu Y P.Small Angle X-ray Scattering——Theory, Determination, and Computer and Application [M]. Beijing: Chemical Industry Press, 2008: 128(朱育平. 小角X射线散射——理论、测试、计算及应用 [M]. 北京: 化学工业出版社, 2008: 128)
[30] Marsh S P, Glicksman M E.Kinetics of phase coarsening in dense systems[J]. Acta Mater., 1996, 44: 3761
[1] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[2] 巩向鹏, 伍翠兰, 罗世芳, 沈若涵, 鄢俊. 自然时效对Al-2.95Cu-1.55Li-0.57Mg-0.18Zr合金160℃人工时效的影响[J]. 金属学报, 2023, 59(11): 1428-1438.
[3] 袁波, 郭明星, 韩少杰, 张济山, 庄林忠. 添加3%ZnAl-Mg-Si-Cu合金非等温时效析出行为的影响[J]. 金属学报, 2022, 58(3): 345-354.
[4] 陈军洲, 吕良星, 甄良, 戴圣龙. AA 7055铝合金时效析出强化模型[J]. 金属学报, 2021, 57(3): 353-362.
[5] 蔡超,李煬,李劲风,张昭,张鉴清. 2A97 Al-Li合金薄板时效析出与电位及晶间腐蚀的相关性研究[J]. 金属学报, 2019, 55(8): 958-966.
[6] 陈亚东, 郑运荣, 冯强. 基于微观组织演变的DZ125定向凝固高压涡轮叶片服役温度场的评估方法研究*[J]. 金属学报, 2016, 52(12): 1545-1556.
[7] 杨文超 汪明朴 盛晓菲 张茜 王正安. 轨道交通车辆用6005A合金板材时效析出及硬化行为研究[J]. 金属学报, 2010, 46(12): 1481-1487.
[8] 闵娜; 李伟; 金学军; 王晓东; 杨涛; 张驰 . 时效对冷拔珠光体钢力学性能的影响[J]. 金属学报, 2006, 42(10): 1009-1013 .