Please wait a minute...
金属学报  2017, Vol. 53 Issue (8): 957-967    DOI: 10.11900/0412.1961.2016.00551
  本期目录 | 过刊浏览 |
大热输入焊接用钢的焊接粗晶热影响区韧性提升方法研究
邹宗园1(), 许小奎1, 李银潇2,3, 王超2
1 燕山大学先进锻压成形技术与科学教育部重点实验室 秦皇岛 066004
2 东北大学轧制技术及连轧自动化国家重点实验室 沈阳 110819
3 中国人民解放军91315部队 大连 116041
Study on the Method of Improving the Toughness of CGHAZ for High Heat Input Welding Steels
Zongyuan ZOU1(), Xiaokui XU1, Yinxiao LI2,3, Chao WANG2
1 Key Laboratory of Advanced Forging & Stamping Technology and Science of Ministry of Education, Yanshan University, Qinhuangdao 066004, China
2 The State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
3 Chinese 91315 People's Liberation Army Troops, Dalian 116041, China
引用本文:

邹宗园, 许小奎, 李银潇, 王超. 大热输入焊接用钢的焊接粗晶热影响区韧性提升方法研究[J]. 金属学报, 2017, 53(8): 957-967.
Zongyuan ZOU, Xiaokui XU, Yinxiao LI, Chao WANG. Study on the Method of Improving the Toughness of CGHAZ for High Heat Input Welding Steels[J]. Acta Metall Sin, 2017, 53(8): 957-967.

全文: PDF(2131 KB)   HTML
  
摘要: 

通过研究焊接热影响区(HAZ)冲击功分布图,提出大热输入焊接用钢焊接粗晶热影响区(CGHAZ)韧性提升的新方法,即在峰值温度不变的条件下,将焊接CGHAZ中晶界铁素体(GBF)和大量针状铁素体(AF)组织改变成细晶热影响区(FGHAZ)多边形铁素体(PF)组织,并消除CGHAZ中破坏韧性的侧板条铁素体(FSP)组织。以对比Ti-V-N与Al-Ti-V-N微合金焊接用钢焊接CGHAZ组织和韧性为基础,探讨了Al-Ti-V-N钢焊接CGHAZ中PF转变条件、形核机制,认为微米级氧化夹杂物是诱导焊接CGHAZ中大量PF形核的关键,纳米级碳氮化物是拖曳、钉扎奥氏体与铁素体晶界的关键,两者的有效配合保证了焊接CGHAZ中大量PF组织生成,从而大幅提升焊接CGHAZ的低温冲击韧性。

关键词 大热输入焊接CGHAZAF形核PF转变韧性    
Abstract

Compared with the low heat input welding steel structures, the high strength low alloy (HSLA) steel structures after high heat input welding keep high temperature with longer time, and the cooling speed is slower, then the austenite crystal grains of coarse-grained heat affected zones (CGHAZ) grow up sharply, and coarse upper bainite (UB) and ferrite side plate (FSP) are generated easily in original austenite crystal, thus toughness of CGHAZ deteriorates seriously. At present, the approach of improving toughness of CGHAZ is to produce massive interleaved acicular ferrite (AF) in the original austenite crystal. However, with the improvement of welding capability for thick plate, welding heat input will be greater, and the hold time of high temperature will be more prolonged. In this case, AF coarsens much seriously, thus the improvement of CGHAZ toughness is limited severely. In this work, a new method for improving the toughness of CGHAZ in high heat input welding steels by studying the distribution map of HAZ impact value was proposed. This new method changes the grain boundary ferrite (GBF) and AF of the CGHAZ to polygonal ferrite (PF) of the fine-grained heat affected zones (FGHAZ) at same peak temperature, which improves the toughness of CGHAZ significantly. Comparing the microstructures and toughness of CGHAZ in Ti-V-N and Al-Ti-V-N micro alloy welding steels, the transformation condition and nucleation mechanism of PF in the CGHAZ of Al-Ti-V-N steel were analyzed. It is found that micron oxide inclusions is a key factor to inducing the nucleation of massive PF in CGHAZ, and nanoscale carbonitride is a key factor to draging and pinning the grain boundaries of austenite and ferrite. Therefore, the effective combination of above two factors guarantees the generation of a large number of PF, which improves the impact toughness greatly at low temperature.

Key wordshigh heat input welding    CGHAZ    AF nucleation    PF transformation    toughness
收稿日期: 2016-12-07     
ZTFLH:  TG142.1  
基金资助:国家自然科学基金项目No.51675465
作者简介:

作者简介 邹宗园,女,1986年生,博士后

图1  低碳钢接头焊接热影响区冲击功的分布图[23]
Steel C Si Mn S Ti Al V N O Cr+Mo+Cu+Ni Fe
A1 0.08 0.10 1.61 0.005 0.025 - 0~0.1 0.007 0.005 <0.1 Bal.
A2 0.08 0.10 1.60 0.005 0.015 0.05 0.05 0.008 0.005 Bal.
表1  实验用钢化学成分
图2  两阶段控轧控冷(TMCP)轧制工艺
图3  焊接热摸拟过程工艺示意图
Steel Rp / MPa Rm / MPa A / % AKV of BM (-40 ℃) J AKV of CGHAZ (-20 ℃) / J
t8/5=138 s t8/5=198 s
A1-0 389 496 30.2 321 244 220
A1-0.05 459 565 25.5 299 244 211
A1-0.1 514 617 20.3 279 181 83
A2 456 562 24.3 310 181 240
表2  2组钢基本力学性能和粗晶热影响区(CGHAZ)冲击功
图4  实验用钢中第二相颗粒固溶析出规律
图5  A1-0.05钢在焊接热摸拟过程中的温度随时间变化曲线
图6  A1-0.05钢CGHAZ冲击功与热输入的关系
图7  A1-0.05钢承受50~500 kJ/cm热输入后CGHAZ组织演变过程的OM像
图8  A2钢焊接热摸拟过程温度随时间变化曲线
图9  A2钢CGHAZ冲击功与t8/5的关系
图10  A2钢承受50~500 s的t8/5后CGHAZ组织演变过程的OM像
图11  A1-0.05和A2钢焊缝周围组织演变OM像
图12  A2钢CGHAZ中微米级夹杂物和PF组织SEM像
图13  A2钢纳米级析出粒子TEM像和EDS分析
图14  A2钢不同冷速下的组织OM像
图15  A2钢焊接热影响区连续冷却转变图
[1] Shi M H, Zhang P Y, Zhu F X.Toughness and microstructure of coarse grain heat affected zone with high heat input welding in Zr-bearing low carbon steel[J]. ISIJ Int., 2014, 54: 188
[2] Byun J S, Shim J H, Suh J Y, et al. Inoculated acicular ferrite microstructure and mechanical properties [J]. Mater. Sci. Eng., 2001, A319-321: 326
[3] Zhang Z, Farrar R A.Role of non-metallic inclusions in formation of acicular ferrite in low alloy weld metals[J]. Mater. Sci. Technol., 1996, 12: 237
[4] Ricks R A, Howell P R, Barritte G S.The nature of acicular ferrite in HSLA steel weld metals[J]. J. Mater. Sci., 1982, 17: 732
[5] Madariaga I, Romero J L, Gutiérrez I.Upper acicular ferrite formation in a medium-carbon microalloyed steel by isothermal transformation: Nucleation enhancement by CuS[J]. Metall. Mater. Trans., 1998, 29A: 1003
[6] Babu S S.The mechanism of acicular ferrite in weld deposits[J]. Curr. Opin. Solid State Mater. Sci., 2004, 8: 267
[7] Wan X L, Li G Q, Wu K M.Microstructure characteristics and formation mechanism of acicular ferrite in high-strength low-alloy steels[J]. J. Iron. Steel Res., 2016, 28(6): 1(万响亮, 李光强, 吴开明. 低合金高强钢针状铁素体组织特征和形成机理[J]. 钢铁研究学报, 2016, 28(6): 1)
[8] Liu Y, Wang K, Wang J M, et al.Acicular ferrite nucleation in high strength low alloys steel during high heat input welding: Influences and mechanism[J]. Mater. Rev., 2016, 30(7): 102(刘岩, 王凯, 王建明等. 大热输入焊接条件下低合金高强度钢针状铁素体形核影响因素及形核机理研究[J]. 材料导报, 2016, 30(7): 102)
[9] Byun J S, Shim J H, Cho Y W, et al.Non-metallic inclusion and intragranular nucleation of ferrite in Ti-killed C-Mn steel[J]. Acta Mater., 2003, 51: 1593
[10] Shim J H, Cho Y W, Chung S H, et al.Nucleation of intragranular ferrite at Ti2O3 particle in low carbon steel[J]. Acta Mater., 1999, 47: 2751
[11] Hu Z Y, Yang C W, Jiang M, et al.In situ observation of intragranular acicular ferrite nucleated on complex titanium-containing inclusions in titanium deoxidized steel[J]. Acta. metall. Sin., 2011, 47: 971(胡志勇, 杨成威, 姜敏等. Ti脱氧钢含Ti复合夹杂物诱导晶内针状铁素体的原位观察[J]. 金属学报, 2011, 47: 971)
[12] Tomita Y, Saito N, Tsuzuki T, et al.Improvement in HAZ toughness of steel by TiN-MnS addition[J]. ISIJ Int., 1994, 34: 829
[13] Miyamoto G, Shinyoshi T, Yamaguchi J, et al.Crystallography of intragranular ferrite formed on (MnS+V(C, N)) complex precipitate in austenite[J]. Scr. Mater., 2003, 48: 371
[14] Shim J H, Oh Y J, Suh J Y, et al.Ferrite nucleation potency of non-metallic inclusions in medium carbon steels[J]. Acta Mater., 2001, 49: 2115
[15] Madariaga I, Gutiérrez I.Role of the particle-matrix interface on the nucleation of acicular ferrite in a medium carbon microalloyed steel[J]. Acta Mater., 1999, 47: 951
[16] Yu S F, Lei Y, Xie M L, et al.Nucleation mechanisms of intragranular ferrite (IGF)[J]. J. Iron Steel Res., 2005, 17(1): 47(余圣甫, 雷毅, 谢明立等. 晶内铁素体的形核机理[J]. 钢铁研究学报, 2005, 17(1): 47)
[17] Wuhan iron and steel wire welding series of National Technical Invention Award [A]. Welding Engineering [C]. Beijing: China Engineering Construction Welding Association, 2010: 1(武钢大热输入焊接系列用钢获国家技术发明奖 [A]. 工程焊接[C]. 北京: 中国工程建设焊接协会, 2010: 1)
[18] Wan X L, Wu K M, Wang H H, et al.Applications of oxide metallurgy technology on high heat input welding steel[J]. China Metall., 2015, 25(6): 6(万响亮, 吴开明, 王恒辉等. 氧化物冶金技术在大热输入焊接用钢的应用[J]. 中国冶金, 2015, 25(6): 6)
[19] Xi X J, Lai C B, Wu C H, et al.Research situation and development of ship steel plate steel by high heat input welding[J]. Nonferrous Met. Sci. Eng., 2016, 7(5): 55(习小军, 赖朝彬, 吴春红等. 大热输入焊接船板钢的研究现状与发展[J]. 有色金属科学与工程, 2016, 7(5): 55)
[20] Andersen I, Grong ?.Analytical modelling of grain growth in metals and alloys in the presence of growing and dissolving precipitates—I. Normal grain growth[J]. Acta Metall. Mater., 1995, 43: 2673
[21] Phelan D J, Stanford N, Dippenaar R.In situ observations of Widmanst?tten ferrite formation in low-carbon steel[J]. Mater. Sci. Eng., 2005, A407: 127
[22] Shi Z R, Wang R Z, Wang Q F, et al.Microstructures and toughness of simulated CGHAZ of vanadium microalloyed steel[J]. Iron Steel, 2015, 50(4): 70(师仲然, 王瑞珍, 王青峰等. 钒微合金钢粗晶热影响区的组织和韧性[J]. 钢铁, 2015, 50(4): 70)
[23] Niu J T.Physical Simulation in Materials and Hot-Working [M]. Beijing: National Defence Industry Press, 1999: 157(牛济泰. 材料和热加工领域的物理模拟技术 [M]. 北京: 国防工业出版社, 1999: 157)
[24] Ishikawa F, Takahashi T, Ochi T.Intragranular ferrite nucleation in medium-carbon vanadium steels[J]. Metall. Mater. Trans., 1994, 25A: 929
[25] Wang C, Wang Z D, Wang G D.Effect of hot deformation and controlled cooling process on microstructures of Ti-Zr deoxidized low carbon steel[J]. ISIJ Int., 2016, 56: 1800
[26] Liu F, Wang K.Discussions on the correlation between thermodynamics and kinetics during the phase transformations in the TMCP of low-alloy steels[J]. Acta Metall. Sin., 2016, 52: 1326(刘峰, 王慷. 低合金钢TMCP中相变热力学/动力学相关性探讨[J]. 金属学报, 2016, 52: 1326)
[27] Su H, Yang C F, Chai F, et al.Application of Thermodynamic and Kinetic Calculation Techniques in the Research of Iron and Steel Materials [M]. Beijing: Science Press, 2012: 207(苏航, 杨才福, 柴锋等. 热力学、动力学计算技术在钢铁材料研究中的应用 [M]. 北京: 科学出版社, 2012: 207)
[28] Wan X L, Li G Q, Wu K M.In-situ observations of grain refinement by TiN particles in the simulated coarse-grained heat-affected zone of a high-strength low-alloy steel[J]. Chin. J. Eng., 2016, 38: 371(万响亮, 李光强, 吴开明. 原位观察TiN粒子对低合金高强度钢模拟焊接热影响区粗晶区晶粒细化作用[J]. 工程科学学报, 2016, 38: 371)
[29] Moon J, Lee C, Uhm S, et al.Coarsening kinetics of TiN particle in a low alloyed steel in weld HAZ: Considering critical particle size[J]. Acta Mater., 2006, 54: 1053
[30] Hui Y J, Pan H, Zhou N, et al.Study on strengthening mechanism of 650 MPa grade V-N microalloyed automobile beam steel[J]. Acta Metall. Sin., 2015, 51: 1481(惠亚军, 潘辉, 周娜等. 650MPa级V-N微合金化汽车大梁钢强化机制研究[J]. 金属学报, 2015, 51: 1481)
[31] Li X L, Wang Z D, Dong X T, et al.Effect of final temperature after ultra-fast cooling on microstructural evolution and precipitation behavior of Nb-V-Ti bearing low alloy steel[J]. Acta Metall. Sin., 2015, 51: 784(李小琳, 王昭东, 邓想涛等. 超快冷终冷温度对含Nb-V-Ti微合金钢组织转变及析出行为的影响[J]. 金属学报, 2015, 51: 784)
[32] Zhang D, Terasaki H, Komizo Y I.In situ observation of the formation of intragranular acicular ferrite at non-metallic inclusions in C-Mn steel[J]. Acta Mater., 2010, 58: 1369
[1] 王滨, 牛梦超, 王威, 姜涛, 栾军华, 杨柯. Cu马氏体时效不锈钢的组织与强韧性[J]. 金属学报, 2023, 59(5): 636-646.
[2] 谷瑞成, 张健, 张明阳, 刘艳艳, 王绍钢, 焦大, 刘增乾, 张哲峰. 三维互穿结构SiC晶须骨架增强镁基复合材料制备及其力学性能[J]. 金属学报, 2022, 58(7): 857-867.
[3] 李伟, 贾兴祺, 金学军. 高强韧QPT工艺的先进钢组织调控和强韧化研究进展[J]. 金属学报, 2022, 58(4): 444-456.
[4] 周成, 赵坦, 叶其斌, 田勇, 王昭东, 高秀华. 回火温度对1000 MPaNiCrMoV低碳合金钢微观组织和低温韧性的影响[J]. 金属学报, 2022, 58(12): 1557-1569.
[5] 朱东明, 何江里, 史根豪, 王青峰. 热输入对Q500qE钢模拟CGHAZ微观组织和冲击韧性的影响[J]. 金属学报, 2022, 58(12): 1581-1588.
[6] 胡晨, 潘帅, 黄明欣. 高强高韧异质结构温轧TWIP[J]. 金属学报, 2022, 58(11): 1519-1526.
[7] 陈瑞润, 陈德志, 王琪, 王墅, 周哲丞, 丁宏升, 傅恒志. Nb-Si基超高温合金及其定向凝固工艺的研究进展[J]. 金属学报, 2021, 57(9): 1141-1154.
[8] 蒋中华, 杜军毅, 王培, 郑建能, 李殿中, 李依依. M-A岛高温回火转变产物对核电SA508-3钢冲击韧性影响机制[J]. 金属学报, 2021, 57(7): 891-902.
[9] 杨锐, 马英杰, 雷家峰, 胡青苗, 黄森森. 高强韧钛合金组成相成分和形态的精细调控[J]. 金属学报, 2021, 57(11): 1455-1470.
[10] 罗海文,沈国慧. 超高强高韧化钢的研究进展和展望[J]. 金属学报, 2020, 56(4): 494-512.
[11] 万响亮, 胡锋, 成林, 黄刚, 张国宏, 吴开明. 两步贝氏体转变对中碳微纳结构钢韧性的影响[J]. 金属学报, 2019, 55(12): 1503-1511.
[12] 邵毅, 李彦默, 刘晨曦, 严泽生, 刘永长. 低碳铁素体不锈钢高频直缝电阻焊管退火工艺优化[J]. 金属学报, 2019, 55(11): 1367-1378.
[13] 文明月, 董文超, 庞辉勇, 陆善平. 一种Fe-Cr-Ni-Mo高强钢焊接热影响区的显微组织与冲击韧性研究[J]. 金属学报, 2018, 54(4): 501-511.
[14] 李一哲, 龚宝明, 刘秀国, 王东坡, 邓彩艳. 面外拘束效应对单边缺口拉伸试样断裂韧性的影响[J]. 金属学报, 2018, 54(12): 1785-1791.
[15] 杨柯, 牛梦超, 田家龙, 王威. 新一代飞机起落架用马氏体时效不锈钢的研究[J]. 金属学报, 2018, 54(11): 1567-1585.