Please wait a minute...
金属学报  2017, Vol. 53 Issue (7): 833-841    DOI: 10.11900/0412.1961.2016.00546
  本期目录 | 过刊浏览 |
Finemet型纳米晶软磁合金的双团簇特征与成分优化
耿遥祥1(),林鑫2,羌建兵3,王英敏3,董闯3
1 江苏科技大学材料科学与工程学院 镇江 212003
2 西北工业大学凝固技术国家重点实验室 西安 710072
3 大连理工大学三束材料改性教育部重点实验室 大连 116024
Dual-Cluster Characteristic and Composition Optimization of Finemet Soft Magnetic Nanocrystalline Alloys
Yaoxiang GENG1(),Xin LIN2,Jianbing QIANG3,Yingmin WANG3,Chuang DONG3
1 School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
2 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
3 Key Lab of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024, China
引用本文:

耿遥祥,林鑫,羌建兵,王英敏,董闯. Finemet型纳米晶软磁合金的双团簇特征与成分优化[J]. 金属学报, 2017, 53(7): 833-841.
Yaoxiang GENG, Xin LIN, Jianbing QIANG, Yingmin WANG, Chuang DONG. Dual-Cluster Characteristic and Composition Optimization of Finemet Soft Magnetic Nanocrystalline Alloys[J]. Acta Metall Sin, 2017, 53(7): 833-841.

全文: PDF(2903 KB)   HTML
  
摘要: 

基于Finemet合金的成分及其非晶前驱体的晶化特征,提出了Finemet型合金的“双团簇”结构模型和团簇式成分,即Finemet合金的非晶前驱体可看作由2类团簇结构构成:一种为基于α-Fe(Si)有序固溶体(例如Fe3Si相)的[Si-Fe14](Cu1/13Si12/13)3弱稳定团簇结构;另一种为对应于Fe-B-Si-Nb系块体非晶合金的[(Si, B)-B2(Fe, Nb)8]Fe强稳定团簇结构。将2种团簇成分式按等比例混合,设计并制备了多个新成分合金。热分析和磁性测量结果表明,所有成分的非晶样品均显示多峰晶化特征,其中,[(Si0.8B0.2)-B2Fe7.2Nb0.8]Fe+[Si-Fe14](Cu1/13Si12/13)3 (即Fe74B7.33Si15.23Nb2.67Cu0.77)非晶两晶化峰的峰间距(ΔTp=Tp2-Tp1)最大,约为192 K。该非晶样品在813 K等温退火60 min后获得典型的纳米晶/非晶复相结构,其饱和磁化强度Bs约为1.26 T,矫顽力Hc约为0.5 A/m,1 kHz下的有效磁导率μe约为8.5×105。新成分纳米晶合金的综合软磁性能均优于典型成分为Fe73.5Si13.5B9Cu1Nb3的已有Finemet纳米晶合金。

关键词 Finemet纳米晶合金“双团簇”模型成分设计软磁性能    
Abstract

The development of nanocrystalline Fe-Si-B-Nb-Cu alloys, commercially known as Finemet, has established a new approach to obtain soft-magnetic materials with high magnetic flux density. The material consists of α-Fe(Si) nanocrystals embedded in an amorphous matrix, which is made by means of partial crystallization. The composition and local structure of the precursor amorphous alloys are crucial for the formation of the unique nanocrystalline structure. The present study is devoted to understanding the composition characteristics and developing new compositions of Finemet alloys. Using the “cluster-plus-glue-atom” model and noticing the crystallization characteristic of Finemet alloy, a “dual-cluster” amorphous structure model is proposed. In this model, the precursor amorphous structure of Finemet alloy is considered to contain a mixture of the [(Si, B)-B2(Fe, Nb)8]Fe cluster derived from the Fe-B-Si-Nb bulk glassy alloys, and the [Si-Fe14](Cu1/13Si12/13)3 cluster from Fe3Si phase. A series of new Finemet nanocrystalline alloy compositions are designed by mixing [(Si, B)-B2(Fe, Nb)8]Fe and [Si-Fe14](Cu1/13Si12/13)3 cluster formulas with a ratio of 1∶1. Thermal analysis results show that [(Si0.8B0.2)-B2Fe7.2Nb0.8]Fe+[Si-Fe14](Cu1/13Si12/13)3 (alloy composition: Fe74B7.33Si15.23Nb2.67Cu0.77) amorphous alloy exhibits a maximal temperature interval of about 192 K between the first and second crystallization peaks. Magnetic measurement results show that the Fe74B7.33Si15.23Nb2.67Cu0.77 nanocrystalline alloy exhibits optimal soft magnetic properties with a saturation magnetization Bs about 1.26 T, a coercive force Hc about 0.5 A/m and an effective permeability μe about 8.5×105 at 1 kHz after isothermal annealing at 813 K for 60 min. The soft magnetic properties of the new composition nanocrystalline alloys are better than that of the typical Finemet nanocrystalline alloy (Fe73.5Si13.5B9Cu1Nb3).

Key wordsFinemet nanocrystalline alloy    “dual-cluster” model    composition design    soft magnetic property
收稿日期: 2016-12-05     
基金资助:国家自然科学基金项目Nos.51671045,51601073,国际热核聚变实验堆计划项目Nos.2013GB107003和2015GB105003,中央高校基本科研业务费项目No.DUT16ZD209及西北工业大学凝固技术国家重点实验室开放课题项目No.SKLSP201607
图1  Fe3Si相中以Si和Fe为心时团簇的体原子密度ρa
Cluster formula Composition r / nm ρ / (gcm-3) e/u
[Si-Fe14]Fe Fe93.75Si6.25 0.2618 7.43 22.0
[Si-Fe14]Fe3 Fe94.44Si5.56 0.2618 7.45 24.8
[Si-Fe14]Si Fe87.5Si12.5 0.2618 7.30 21.7
[Si-Fe14]Si3 Fe77.78Si22.22 0.2618 7.08 23.9
[Si-Fe14]FeSi2 Fe83.33Si16.67 0.2618 7.20 24.3
[Si-Fe14]Fe2Si Fe88.89Si11.11 0.2618 7.33 24.5
表1  Fe-Si二元合金的团簇式成分、团簇半径r、密度ρ和单位团簇式所对应的电子浓度e/u
No. Dual cluster formula Composition
1 [(Si0.95B0.05)-B2Fe7.5Nb0.5]Fe[17]+[Si-Fe14](Cu1/13Si12/13)3 Fe75B6.83Si15.73Nb1.67Cu0.77
2 [(Si0.9B0.1)-B2Fe7.4Nb0.6]Fe[17]+[Si-Fe14] (Cu1/13Si12/13)3 Fe74.67B7Si15.56Nb2Cu0.77
3 [(Si0.85B0.15)-B2Fe7.3Nb0.7]Fe[17]+[Si-Fe14](Cu1/13Si12/13)3 Fe74.33B7.17Si15.40Nb2.33Cu0.77
4 [(Si0.8B0.2)-B2Fe7.2Nb0.8]Fe[17]+[Si-Fe14](Cu1/13Si12/13)3 Fe74B7.33Si15.23Nb2.67Cu0.77
5 [(Si0.75B0.25)-B2Fe7.1Nb0.9]Fe[17]+[Si-Fe14](Cu1/13Si12/13)3 Fe73.67B7.5Si15.06Nb3Cu0.77
6 [(Si0.7B0.3)-B2Fe7Nb]Fe[17]+[Si-Fe14](Cu1/13Si12/13)3 Fe73.33B7.67Si14.90Nb3.33Cu0.77
7 - Fe73.5Si13.5B9Cu1Nb3[2]
表2  设计获得的Finemet纳米晶合金新成分(Nos.1~6)和典型Finemet纳米晶合金成分(No.7)
图2  No.1~No.7样品的XRD谱
图3  No.1~No.7非晶样品的DTA曲线
No. Tx1 Tp1 Tx2 Tp2 ΔTp Tl
1 768 784 934 954 170 1489
2 776 794 949 970 176 1477
3 787 805 962 982 177 1473
4 788 811 990 1003 192 1472
5 800 823 985 995 172 1461
6 809 833 983 992 159 1440
7 793 813 936 953 140 1440
表3  No.1~No.7非晶样品的第一晶化峰晶化开始温度Tx1、第一晶化峰峰值温度Tp1、第二晶化峰晶化开始温度Tx2、第二晶化峰峰值温度Tp2、两晶化峰之间的距离ΔTp和液相线温度Tl
图4  No.4非晶样品Fe74B7.33Si15.23Nb2.67Cu0.77在不同温度下等温退火60 min后的XRD谱
图5  No.4非晶样品经713 K退火60 min后的HRTEM像和SAED谱
图6  No.4非晶样品Fe74B7.33Si15.23Nb2.67Cu0.77经873 K退火60 min后的TEM明场像和SAED谱
图7  No.4非晶样品Fe74B7.33Si15.23Nb2.67Cu0.77经973 K退火60 min后的TEM明场像及I区和II区的SAED花样
图8  No.4纳米晶样品Fe74B7.33Si15.23Nb2.67Cu0.77中α-Fe(Si)的晶粒尺寸D与退火温度的关系曲线
图9  No.4非晶和纳米晶合金的饱和磁化强度Bs和矫顽力Hc随退火温度的变化曲线
T / K D / nm Bs / T Hc / (Am-1) μe / 105
713 - 1.30 1.0 5.4
733 - 1.31 1.0 6.0
753 8 1.30 1.1 5.8
773 10 1.25 1.5 6.2
793 13 1.25 1.8 7.0
813 15 1.26 0.5 8.5
833 18 1.26 1.5 6.9
853 18 1.26 2.0 5.3
873 18 1.27 3.5 3.1
893 20 1.25 35 -
933 26 0.76 350 -
973 110 0.67 800 -
表4  No.4非晶样品的退火温度T,退火后获得的D、Bs、Hc和有效磁导率μe
图10  No.4非晶和纳米晶合金的μe和Hc随退火温度的变化曲线
[1] Wang X L.From research to industrialization for amorphous and nanocrystalline soft magnetic alloys (1)[J]. Met. Funct. Mater., 1996, 3(5): 161
[1] (王新林. 非晶和纳米晶软磁合金从研究到产业化(一)[J]. 金属功能材料, 1996, 3(5): 161)
[2] Yoshizawa Y, Oguma S, Yamauchi K.New Fe-based soft magnetic alloys composed of ultrafine grain structure[J]. J. Appl. Phys., 1988, 64: 6044
[3] Chen G J, Wang X J.Recent advance in Finemet type nanocrystaline soft magnetie alloys[J]. Met. Funct. Mater., 2003, 10(4): 28
[3] (陈国钧, 王旭军. Finemet型FeCuNbSiB系纳米软磁合金的新进展[J]. 金属功能材料, 2003, 10(4): 28)
[4] Yoshizawa Y, Yamauchi K.Fe-based soft magnetic alloys composed of ultrafine grain structure[J]. Mater. Trans. JIM, 1990, 31: 307
[5] Ayers J D, Harris V G, Sprague J A, et al.On the formation of nanocrystals in the soft magnetic alloy Fe73.5Nb3Cu1Si13.5B9[J]. Acta Mater., 1998, 46: 1861
[6] Hono K, Ping D H, Ohnuma M, et al.Cu clustering and Si partitioning in the early crystallization stage of an Fe73.5Si13.5B9Nb3Cu1 amorphous alloy[J]. Acta Mater., 1999, 47: 997
[7] Wang Z R, Qiang J B, Wang Y M, et al.Composition design procedures of Ti-based bulk metallic glasses using the cluster-plus-glue-atom model[J]. Acta Mater., 2016, 111: 366
[8] Han G, Qiang J B, Li F W, et al.The e/a values of ideal metallic glasses in relation to cluster formulae[J]. Acta Mater., 2011, 59: 5917
[9] Luo L J, Chen H, Wang Y M, et al.24 electron cluster formulas as the ‘molecular’ units of ideal metallic glasses[J]. Philos. Mag., 2014, 94: 2520
[10] Geng Y X, Wang Y M, Qiang J B, et al.Composition formulas of Fe-B binary amorphous alloys[J]. J. Non-Cryst. Solids, 2016, 432: 453
[11] Geng Y X, Zhang Z J, Wang Z R, et al.Magnetic properties and a structure model for high Fe content Fe-B-Si-Zr bulk glassy alloys[J]. J. Non-Cryst. Solids, 2016, 450: 1
[12] Geng Y X, Zhang Z J, Wang Y M, et al.Structure-property correlation of high Fe-content Fe-B-Si-Hf bulk glassy alloys[J]. Acta Metall. Sin., 2017, 53: 369
[12] (耿遥祥, 张志杰, 王英敏等. 高Fe含量Fe-B-Si-Hf块体非晶合金的结构-性能关联[J]. 金属学报, 2017, 53: 369)
[13] Pang C, Jiang B B, Shi Y, et al.Cluster-plus-glue-atom model and universal composition formulas [cluster] (glue atom)x for BCC solid solution alloys[J]. J. Alloys Compd., 2015, 652: 63
[14] Geng Y X, Wang Y M, Qiang J B, et al.Fe-B-Si-Zr soft magnetic bulk glassy alloys[J]. Intermetallics, 2015, 67: 138
[15] Geng Y X.Composition design and properties investigation for Fe-B-Si based amorphous and nanocrystalline alloys [D]. Dalian: Dalian University of Technology, 2016
[15] (耿遥祥. Fe-B-Si系非晶/纳米晶合金的成分设计及性能研究[D]. 大连: 大连理工大学, 2016)
[16] Wang Q, Zha Q F, Liu E X, et al., Composition design of high-strength martensitic precipitation hardening stainless steels based on a cluster model[J]. Acta Metall. Sin., 2012, 48: 1201
[16] (王清, 查钱锋, 刘恩雪等. 基于团簇模型的高强度马氏体沉淀硬化不锈钢成分设计[J]. 金属学报, 2012, 48: 1201)
[17] Geng Y X, Wang Y M, Qiang J B, et al.Composition design and optimization of Fe-B-Si-Nb bulk amorphous alloys[J]. Acta Metall. Sin., 2016, 52: 1459
[17] (耿遥祥, 王英敏, 羌建兵等. Fe-B-Si-Nb块体非晶合金的成分设计与优化[J]. 金属学报, 2016, 52: 1459)
[18] Ma Y P, Dong D D, Dong C, et al.Composition formulas of binary eutectics[J]. Sci. Rep., 2015, 5: 17880
[19] Mondal K, Murty B S.On the parameters to assess the glass forming ability of liquids[J]. J. Non-Cryst. Solids, 2005, 351: 1366
[20] Makino A, Men H, Kubota T, et al. New Fe-metalloids based nanocrystalline alloys with high Bs of 1.9 T and excellent magnetic softness [J]. J. Appl. Phys., 2009, 105: 07A308
[21] McHenry M E, Willard M A, Laughlin D E. Amorphous and nanocrystalline materials for applications as soft magnets[J]. Prog. Mater. Sci., 1999, 44: 291
[22] Patterson A L.The Scherrer formula for X-ray particle size determination[J]. Phys. Rev., 1939, 56: 978
[23] Herzer G.Grain structure and magnetism of nanocrystalline ferromagnets[J]. IEEE Trans. Magn., 1989, 25: 3327
[24] Herzer G.Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets[J]. IEEE Trans. Magn., 1990, 26: 1397
[1] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[2] 何兴群, 付华栋, 张洪涛, 方继恒, 谢明, 谢建新. 机器学习辅助高性能银合金电接触材料的快速发现[J]. 金属学报, 2022, 58(6): 816-826.
[3] 汪东红, 孙锋, 疏达, 陈晶阳, 肖程波, 孙宝德. 数据驱动镍基铸造高温合金设计及复杂铸件精确成形[J]. 金属学报, 2022, 58(1): 89-102.
[4] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[5] 吴静,刘永长,李冲,伍宇婷,夏兴川,李会军. 高Fe、Cr含量多相Ni3Al基高温合金组织与性能研究进展[J]. 金属学报, 2020, 56(1): 21-35.
[6] 耿遥祥,张志杰,王英敏,羌建兵,董闯,汪海斌,特古斯. 高Fe含量Fe-B-Si-Hf块体非晶合金的结构-性能关联[J]. 金属学报, 2017, 53(3): 369-375.
[7] 耿遥祥,王英敏,羌建兵,董闯,汪海斌,特古斯. Fe-B-Si-Nb块体非晶合金的成分设计与优化*[J]. 金属学报, 2016, 52(11): 1459-1466.
[8] 周雪峰,陈光,严世坦, 郑功,李沛,陈锋. 新型无Re镍基单晶高温合金探索研究[J]. 金属学报, 2013, 49(11): 1467-1472.
[9] 王清 查钱锋 刘恩雪 董闯 王学军 谭朝鑫 冀春俊. 基于团簇模型的高强度马氏体沉淀硬化不锈钢成分设计[J]. 金属学报, 2012, 48(10): 1201-1206.
[10] 袁亮 羌建兵 庞厰 王英敏 王清 董闯. 源自Ni--Nb共晶团簇式的Ni-Nb-(Zr, Ta, Ag) 三元块体非晶合金成分设计[J]. 金属学报, 2011, 47(8): 1003-1008.
[11] 马仁涛 郝传璞 王清 任明法 王英敏 董闯. 低弹bcc结构Ti-Mo-Nb-Zr固溶体合金的“团簇+连接原子”模型及其成分设计[J]. 金属学报, 2010, 46(9): 1034-1040.
[12] 吴泽宇 郭胜锋 李宁 柳林. Co对Fe--B--Y--Nb块体非晶合金玻璃形成能力及软磁性能的影响[J]. 金属学报, 2009, 45(2): 249-252.
[13] 陈伟荣; 王清; 程旭; 张庆瑜; 董闯 . 基于团簇线的Fe-B-Y基五元块体非晶合金[J]. 金属学报, 2007, 43(8): 797-802 .
[14] 陈卫平; 萧淑琴; 王文静; 刘宜华 . 沉积态 (Fe88Zr7B5)0.97Cu0.03软磁合金薄膜的磁性和巨磁阻抗效应[J]. 金属学报, 2004, 40(12): 1295-1298 .
[15] 智靖;何开元;程力智;傅玉君;王治;刘轶. (Fe,Cu,Nb)_(77.5)Si_xB_(22.5-x)纳米晶合金的结构和磁性研究[J]. 金属学报, 1994, 30(14): 61-65.