Please wait a minute...
金属学报  2017, Vol. 53 Issue (6): 709-718    DOI: 10.11900/0412.1961.2016.00523
  本期目录 | 过刊浏览 |
N掺杂对V-Al-C涂层微观结构、力学及摩擦性能的影响
王鑫1,2,王振玉2,冯再新1,柯培玲2(),汪爱英2
1 中北大学材料科学与工程学院 太原 030051
2 中国科学院海洋新材料与应用技术重点实验室 中国科学院宁波材料技术与工程研究所 宁波 315201
Effect of N Doping on Microstructure, Mechanical and Tribological Properties of V-Al-C Coatings
Xin WANG1,2,Zhenyu WANG2,Zaixin FENG1,Peiling KE2(),Aiying WANG2
1 College of Materials Science and Engineering, North University of China, Taiyuan 030051, China
2 Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
引用本文:

王鑫,王振玉,冯再新,柯培玲,汪爱英. N掺杂对V-Al-C涂层微观结构、力学及摩擦性能的影响[J]. 金属学报, 2017, 53(6): 709-718.
Xin WANG, Zhenyu WANG, Zaixin FENG, Peiling KE, Aiying WANG. Effect of N Doping on Microstructure, Mechanical and Tribological Properties of V-Al-C Coatings[J]. Acta Metall Sin, 2017, 53(6): 709-718.

全文: PDF(8662 KB)   HTML
摘要: 

采用磁控溅射技术在Si片(100)和高速钢上制备V-Al-C和V-Al-C-N涂层,利用XRD、XPS、SEM、纳米压痕仪和摩擦磨损试验机对比分析了涂层的相结构、化学组成、表面形貌、断面结构、力学性能以及不同介质中(大气、去离子水和海水)涂层的摩擦学性能。结果表明,V-Al-C涂层呈柱状晶结构生长,晶粒粗大;N的引入阻碍V-Al-C涂层的柱状晶结构生长,结构致密化,晶粒尺寸减小,形成非晶碳包裹纳米晶的纳米复合结构,使硬度从(14±0.48) GPa增加到(24.5±0.8) GPa,韧性得到大幅提高(H/E>0.1)。大气干摩擦条件下,V-Al-C涂层摩擦系数为0.70,引入N后摩擦系数降为0.42,这主要是由于在摩擦过程中V-Al-C-N涂层生成了具有润滑效果的V2O5,在非晶碳与V2O5耦合润滑作用下,涂层摩擦系数降低了40%;对于同一涂层,在去离子水和海水环境下的摩擦系数较大气干摩擦条件下降低,主要原因为:前者吸附的水分子可形成边界润滑作用。海水环境摩擦时,海水中Mg2+、Ca2+生成Mg(OH)2、CaCO3,均可提供进一步润滑效果,摩擦系数最低。3种环境摩擦过程中,30 min后V-Al-C涂层均因严重的磨粒磨损致磨穿而失效,且在腐蚀和磨损的协同作用下,海水环境中的磨损率最高。使用N掺杂制备的V-Al-C-N涂层均显示出良好的抗磨损性能,在干摩擦时磨损率为3.0×10-16 m3/(Nm),在海水中为1.4×10-15 m3/(Nm)。

关键词 V-Al-C涂层V-Al-C-N涂层纳米复合结构韧性摩擦性能    
Abstract

The crises of resource shortage have prompted ocean exploitation to spring up all over the world. Some crucial frictional components of marine equipment have to be directly faced with the conjoint action of wear and corrosion. Transition metal nitrides or carbides hard coatings have been widely used to improve tribological performance in various applications. However, the poor toughness, wear and corrosion resistance of coatings cannot meet the harsher marine environment, which needs to obtain multi-functional hard coatings providing complex properties. The nanocomposite structure coatings containing nanocrystalline phase embedded in an amorphous matrix allow tailoring their properties to desired value by designing chemical composition and nanostructure. In this work, V-Al-C and V-Al-C-N coatings were deposited on silicon and high speed steel (HSS) substrates by magnetron sputtering. The crystal microstructure, chemical composition, surface morphology, cross-sectional structure, mechanical property and friction behavior of the coatings under different contact conditions (air, distilled water and artificial seawater) were studied by XRD, XPS, SEM, nano-indentation and ball-on-disc tribometer. The results showed that the V-Al-C coating displayed columnar structure with coarse grain. When the nitrogen was incorporated, the coating structure evolved into nanocomposite structure composed of nanocrystallite and amorphous carbon. The hardness increased from (14±0.48) GPa to (24.5±0.8) GPa, and the toughness was significantly improved (H/E>0.1). In air condition, the friction coefficient decreased from 0.70 to 0.42, owing to the synergy interaction between V2O5 and amorphous carbon during sliding. The friction coefficients of the both coatings in distilled water and artificial seawater were lower than those in air owing to the boundary lubrication forming lubricative film by absorbed water. The friction coefficient in seawater was lower than those in distilled water, resulting from the formation of Mg(OH)2 and CaCO3 during sliding. However, the wear rates of the both coatings in artificial seawater were larger than that in distilled water, which demonstrated a synergism between corrosion and wear in artificial water. The V-Al-C coating was all worn out under different contact conditions owing to severe abrasive wear, while the V-Al-C-N coating showed better wear resistance, with a wear rate of 3.0×10-16 m3/(Nm) in air and 1.4×10-15 m3/(Nm) in artificial water, respectively.

Key wordsV-Al-C coating    V-Al-C-N coating    nanocomposite structure    toughness    tribology property
收稿日期: 2016-11-21     
基金资助:国家自然科学基金项目No.51375475,江西省科技项目Nos.2015XTTD03和20161ACE50023及浙江省公益技术应用研究计划项目No.2016C31121
Coating O V Al C N
V-Al-C 6.34 37.94 8.71 47.01
V-Al-C-N 5.81 23.64 11.62 25.65 33.28
表1  V-Al-C和V-Al-C-N涂层元素含量
图1  V-Al-C与V-Al-C-N涂层的XRD谱
图2  V-Al-C与V-Al-C-N涂层的XPS谱
图3  2种涂层的Raman谱及V-Al-C-N涂层非晶碳区Gaussian拟合
图4  2 种涂层表面和截面形貌的SEM像
图5  V-Al-C 与V-Al-C-N 涂层的TEM和HRTEM像
图6  V-Al-C和V-Al-C-N涂层Vickers压痕形貌SEM像
图7  V-Al-C和V-Al-C-N涂层的加载卸载曲线
Coating H / GPa E / GPa H/E H3/E2
V-Al-C 14.0 210.2 0.067 0.062
V-Al-C-N 25.1 245.8 0.102 0.262
表2  V-Al-C和V-Al-C-N涂层的力学性能
图8  涂层在不同介质中的摩擦行为
图9  涂层在不同介质中的平均摩擦系数
图10  涂层磨痕的截面轮廓
图11  V-Al-C和V-Al-C-N涂层磨痕形貌及对应的EDS分析
图12  V-Al-C和V-Al-C-N涂层在不同介质中的磨损率
图13  V-Al-C和V-Al-C-N涂层在不同介质中磨痕的Raman谱
[1] Ruden A, Restrepo-Parra E, Paladines A U, et al.Corrosion resistance of CrN thin films produced by dc magnetron sputtering[J]. Appl. Surf. Sci., 2013, 270: 150
[2] Mendibide C, Steyer T P, Millet J P.Formation of a semiconductive surface film on nanomultilayered TiN/CrN coatings and its correlation with corrosion protection of steel[J]. Surf. Coat. Technol., 2005, 200: 109
[3] Lin N M, Huang X B, Zhang X Y, et al.In vitro assessments on bacterial adhesion and corrosion performance of TiN coating on Ti6Al4V titanium alloy synthesized by multi-arc ion plating[J]. Appl. Surf. Sci., 2012, 258: 7047
[4] Barshilia H C, Deepthi B, Rajam K S.Transition metal nitride-based nanolayered multilayer coatings and nanocomposite coatings as novel superhard materials [A]. Nanostructured Thin Films and Coatings: Mechanical Properties [M]. Boca Raton, FL: CRC Press, 2010: 427
[5] Mo J L, Zhu M H, Lei B, et al.Comparison of tribological behaviours of AlCrN and TiAlN coatings——Deposited by physical vapor deposition[J]. Wear, 2007, 263: 1423
[6] Mann B S, Arya V, Maiti A K, et al.Corrosion and erosion performance of HVOF/TiAlN PVD coatings and candidate materials for high pressure gate valve application[J]. Wear, 2006, 260: 75
[7] Gilewicz A, Chmielewska P, Murzynski D, et al.Corrosion resistance of CrN and CrCN/CrN coatings deposited using cathodic arc evaporation in Ringer's and Hank's solutions[J]. Surf. Coat. Technol., 2016, 299: 7
[8] Lindquist M, Wilhelmsson O, Jansson U, et al.Tribofilm formation and tribological properties of TiC and nanocomposite TiAlC coatings[J]. Wear, 2009, 266: 379
[9] Wang Z Y, Xu S, Zhang D, et al.Influence of N2 flow rate on structures and mechanical properties of TiSiN coatings prepared by HIPIMS method[J]. Acta Metall. Sin., 2014, 50: 540
[9] (王振玉, 徐胜, 张栋等. N2流量对HIPIMS制备TiSiN涂层结构和力学性能的影响[J]. 金属学报, 2014, 50: 540)
[10] Wang Q M, Kim K H.Microstructural control of Cr-Si-N films by a hybrid arc ion plating and magnetron sputtering process[J]. Acta Mater., 2009, 57: 4974
[11] Ge F F, Zhu P, Wang H Y, et al.Friction and wear behavior of magnetron co-sputtered V-Si-N coatings[J]. Wear, 2014, 315: 17
[12] Mu Y T, Liu M, Wang Y X, et al.PVD multilayer VN-VN/Ag composite coating with adaptive lubricious behavior from 25 to 700 ℃[J]. RSC Adv., 2016, 6: 53043
[13] Wilhelmsson O, R?sander M, Carlsson M, et al.Design of nanocomposite low-friction coatings[J]. Adv. Funct. Mater., 2007, 17: 1611
[14] Lee J W, Tien S K, Kuo Y C.The effects of substrate bias, substrate temperature, and pulse frequency on the microstructures of chromium nitride coatings deposited by pulsed direct current reactive magnetron sputtering[J]. J. Electron. Mater., 2005, 34: 1484
[15] Pelleg J, Zevin L Z, Lungo S.Reactive-sputter-deposited TiN films on glass substrates[J]. Thin Solid Films, 1991, 197: 117
[16] Chaliyawala H A, Gupta G, Kumar P, et al.Structural and mechanical properties of reactively sputtered TiAlC nanostructured hard coatings[J]. Surf. Coat. Technol., 2015, 276: 431
[17] Escobar-Alarcon L, Medina V, Camps E, et al.Microstructural characterization of Ti-C-N thin films prepared by reactive crossed beam pulsed laser deposition[J]. Appl. Surf. Sci., 2011, 257: 9033
[18] Choe H J, Kwon S H, Lee J J.Tribological properties and thermal stability of TiAlCN coatings deposited by ICP-assisted sputtering[J]. Surf. Coat. Technol., 2013, 228: 282
[19] Veprek S, Veprek-Heijman M G J, Karvankova P, et al. Different approaches to superhard coatings and nanocomposites[J]. Thin Solid Films, 2005, 476: 1
[20] Hakamada M, Nakamoto Y, Matsumoto H, et al.Relationship between hardness and grain size in electrodeposited copper films[J]. Mater. Sci. Eng., 2007, A457: 120
[21] Feng W R, Yan D R, He J N, et al.Microhardness and toughness of the TiN coating prepared by reactive plasma spraying[J]. Appl. Surf. Sci., 2005, 243: 204
[22] Sakharova N A, Fernandes J V, Oliveira M C, et al.Influence of ductile interlayers on mechanical behaviour of hard coatings under depth-sensing indentation: A numerical study on TiAlN[J]. J. Mater. Sci., 2010, 45: 3812
[23] Meng F P, Wang B, Ge F F, et al.Microstructure and mechanical properties of Ni-alloyed SiC coatings[J]. Surf. Coat. Technol., 2012, 213: 77
[24] Chen B B, Wang J Z, Yan F Y.Friction and wear behaviors of several polymers sliding against GCr15 and 316 steel under the lubrication of sea water[J]. Tribol. Lett., 2011, 42: 17
[25] Shan L, Wang Y X, Li J L, et al.Tribological behaviours of PVD TiN and TiCN coatings in artificial seawater[J]. Surf. Coat. Technol., 2013, 226: 40
[26] Guan X Y, Wang Y X, Xue Q J, et al.Toward high load bearing capacity and corrosion resistance Cr/Cr2N nano-multilayer coatings against seawater attack[J]. Surf. Coat. Technol., 2015, 282: 78
[27] Bosco M V, Ba?ares M A, Martínez-Huerta M V, et al. In situ FTIR and Raman study on the distribution and reactivity of surface vanadia species in V2O5/CeO2 catalysts[J]. J. Mol. Catal. Chem., 2015, 408A: 75
[28] Fateh N, Fontalvo G A, Gassner G, et al.Influence of high-temperature oxide formation on the tribological behaviour of TiN and VN coatings[J]. Wear, 2007, 262: 1152
[29] Kutschej K, Mayrhofer P H, Kathrein M, et al.Influence of oxide phase formation on the tribological behaviour of Ti-Al-V-N coatings[J]. Surf. Coat. Technol., 2005, 200: 1731
[1] 王滨, 牛梦超, 王威, 姜涛, 栾军华, 杨柯. Cu马氏体时效不锈钢的组织与强韧性[J]. 金属学报, 2023, 59(5): 636-646.
[2] 谷瑞成, 张健, 张明阳, 刘艳艳, 王绍钢, 焦大, 刘增乾, 张哲峰. 三维互穿结构SiC晶须骨架增强镁基复合材料制备及其力学性能[J]. 金属学报, 2022, 58(7): 857-867.
[3] 李伟, 贾兴祺, 金学军. 高强韧QPT工艺的先进钢组织调控和强韧化研究进展[J]. 金属学报, 2022, 58(4): 444-456.
[4] 周成, 赵坦, 叶其斌, 田勇, 王昭东, 高秀华. 回火温度对1000 MPaNiCrMoV低碳合金钢微观组织和低温韧性的影响[J]. 金属学报, 2022, 58(12): 1557-1569.
[5] 朱东明, 何江里, 史根豪, 王青峰. 热输入对Q500qE钢模拟CGHAZ微观组织和冲击韧性的影响[J]. 金属学报, 2022, 58(12): 1581-1588.
[6] 胡晨, 潘帅, 黄明欣. 高强高韧异质结构温轧TWIP[J]. 金属学报, 2022, 58(11): 1519-1526.
[7] 陈瑞润, 陈德志, 王琪, 王墅, 周哲丞, 丁宏升, 傅恒志. Nb-Si基超高温合金及其定向凝固工艺的研究进展[J]. 金属学报, 2021, 57(9): 1141-1154.
[8] 蒋中华, 杜军毅, 王培, 郑建能, 李殿中, 李依依. M-A岛高温回火转变产物对核电SA508-3钢冲击韧性影响机制[J]. 金属学报, 2021, 57(7): 891-902.
[9] 杨锐, 马英杰, 雷家峰, 胡青苗, 黄森森. 高强韧钛合金组成相成分和形态的精细调控[J]. 金属学报, 2021, 57(11): 1455-1470.
[10] 罗海文,沈国慧. 超高强高韧化钢的研究进展和展望[J]. 金属学报, 2020, 56(4): 494-512.
[11] 万响亮, 胡锋, 成林, 黄刚, 张国宏, 吴开明. 两步贝氏体转变对中碳微纳结构钢韧性的影响[J]. 金属学报, 2019, 55(12): 1503-1511.
[12] 邵毅, 李彦默, 刘晨曦, 严泽生, 刘永长. 低碳铁素体不锈钢高频直缝电阻焊管退火工艺优化[J]. 金属学报, 2019, 55(11): 1367-1378.
[13] 文明月, 董文超, 庞辉勇, 陆善平. 一种Fe-Cr-Ni-Mo高强钢焊接热影响区的显微组织与冲击韧性研究[J]. 金属学报, 2018, 54(4): 501-511.
[14] 李一哲, 龚宝明, 刘秀国, 王东坡, 邓彩艳. 面外拘束效应对单边缺口拉伸试样断裂韧性的影响[J]. 金属学报, 2018, 54(12): 1785-1791.
[15] 杨柯, 牛梦超, 田家龙, 王威. 新一代飞机起落架用马氏体时效不锈钢的研究[J]. 金属学报, 2018, 54(11): 1567-1585.