Please wait a minute...
金属学报  2017, Vol. 53 Issue (5): 583-591    DOI: 10.11900/0412.1961.2016.00502
  论文 本期目录 | 过刊浏览 |
直流电流对Ti-48Al-2Cr-2Nb合金组织和性能的影响
陈占兴,丁宏升,刘石球,陈瑞润,郭景杰,傅恒志
哈尔滨工业大学材料科学与工程学院金属精密热加工国家级重点实验室 哈尔滨 150001
Effects of Direct Current on Microstructure and Properties of Ti-48Al-2Cr-2Nb Alloy
Zhanxing CHEN,Hongsheng DING,Shiqiu LIU,Ruirun CHEN,Jingjie GUO,Hengzhi FU
National Key Laboratory for Precision Hot Processing of Metals, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
全文: PDF(8560 KB)   HTML
  
摘要: 

将直流电流作用于定向凝固过程中的Ti-48Al-2Cr-2Nb合金,利用OM、XRD、SEM和TEM分析了合金的凝固组织、相组成和片层组织,测试了合金的显微硬度及800 ℃压缩力学性能。结果表明,电流在一定程度上促进了合金凝固组织的细化及成分的均匀性,减少或消除了片层间偏析。随着电流密度的增大,平均晶粒尺寸和片层厚度呈现先减小后增大的趋势,α2相相对含量先增大而后减小,合金的显微硬度、压缩断裂与屈服强度也呈现先增大后减小的趋势。平均晶粒尺寸最小约0.46 mm,片层间距最小为0.19 μm,分别比未加载电流时降低70%和29%,α2相相对含量从18.5%增至39.4%。片层间距或晶粒尺寸越小,合金的强度越高,变形能力越均匀,塑性也越好。合金的最大显微硬度达542 HV,合金的压缩屈服强度与断裂强度分别达到1200和1365 MPa,与未施加电流时相比均有所提高。加载直流电流引起固-液界面相前沿过冷度减小,可认为是TiAl二元相图中的L→β+L→α+β的包晶反应成分向富Al侧微小偏移,此时初生β相增多,从而造成了TiAl合金室温相组织α2相的相对含量增加。

关键词 TiAl合金直流电流凝固微观组织显微硬度高温压缩    
Abstract

TiAl based alloys have been widely used as promising aerospace structural materials, which benefit from their unique combination of mechanical properties. However, they yield poor plasticity and low process ability, thus restricting the wide application. In this work, an efficient way was proposed by which direct current (DC) was imposed on the solidification process of TiAl-based alloy. Influences of DC on the microstructure and properties of directionally solidified Ti-48Al-2Cr-2Nb alloy using water cold crucible directional solidification equipment has been investigated. The changes of solidification microstructure, phase structure and composition of the alloy and γ/α2 interlamellar structures were characterized by OM, XRD, SEM and TEM. The effect of DC on the size of eutectoid colony, interlamellar spacing and relative content of α2 phase had been studied by Image Pro Plus. Furthermore, the mechanical properties of the directionally solidified Ti-48Al-2Cr-2Nb alloy at 800 ℃ were performed. The results revealed that the DC can evidently promote the homogeneity of the solidification component and refiner the structure, and the segregation in lamellar colonies can be efficiently reduced or eliminated to a certain extent. With the increasing of the current density, the grain size and lamellar spacing decreased first and then increased, however, the α2 phase content showed a totally different trend. Moreover, the microhardness, compression yield strength and the fracture strength of the alloy also revealed a trend of decrease after the first increase too. With the current density increasing, the average grain size and interlamellar spacing declined to the lowest of 0.46 mm and 0.19 μm, respectively, and the content of α2 phase increased from 18.5% to 39.4%. The microhardness of sample reached 542 HV, the compression yield strength and the fracture strength were remarkably improved, and the maximum values reached 1200 and 1365 MPa, respectively. DC can cause a reduction of the supercooling in front of the liquid phase during the solidification process. The results can be seen as the peritectic reaction L→β+L→α+β moving a tiny drift to the direction of the Al-rich side in TiAl binary phase diagram, consequently, the primary β-phase increased, and the content of α2 phase, microstructure under room temperature, increased evidently.

Key wordsTiAl alloy    direct current    solidification    microstructure    microhardness    high temperature compression
收稿日期: 2016-11-11      出版日期: 2017-03-13
基金资助:国家自然科学基金项目Nos.51171053和51471062

引用本文:

陈占兴,丁宏升,刘石球,陈瑞润,郭景杰,傅恒志. 直流电流对Ti-48Al-2Cr-2Nb合金组织和性能的影响[J]. 金属学报, 2017, 53(5): 583-591.
Zhanxing CHEN,Hongsheng DING,Shiqiu LIU,Ruirun CHEN,Jingjie GUO,Hengzhi FU. Effects of Direct Current on Microstructure and Properties of Ti-48Al-2Cr-2Nb Alloy. Acta Metall, 2017, 53(5): 583-591.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2016.00502      或      http://www.ams.org.cn/CN/Y2017/V53/I5/583

图1  直流电流作用下定向凝固Ti-48Al-2Cr-2Nb合金的宏观组织
图2  直流电流作用下Ti-48Al-2Cr-2Nb组织的OM像
图3  直流电流作用下Ti-48Al-2Cr-2Nb合金组织的SEM像
图4  电流作用下Ti-48Al-2Cr-2Nb的XRD谱
图5  直流电流作用下Ti-48Al-2Cr-2Nb合金的片层组织TEM像
图6  直流电流作用下Ti-48Al-2Cr-2Nb合金中的α2相含量变化
图7  直流电流作用下Ti-48Al-2Cr-2Nb合金的晶粒尺寸及片层间距
图8  直流电流作用下定向凝固Ti-48Al-2Cr-2Nb合金各区域的显微硬度
图9  直流电流作用下Ti-48Al-2Cr-2Nb合金的高温压缩真应力-应变曲线
图10  直流电流作用下TiAl二元合金非平衡转变示意图
[1] Dimiduk D M.Gamma titanium aluminide alloys—An assessment within the competition of aerospace structural materials[J]. Mater. Sci. Eng., 1999, A263: 281
[2] Appel F, Brossmann U, Christoph U, et al.Recent progress in the development of gamma titanium aluminide alloys[J]. Adv. Eng. Mater., 2000, 2: 699
[3] Appel H F, Paul J D H, Oehring M. Gamma Titanium Aluminide Alloys: Science and Technology[M]. Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011: 1
[4] Wu X H.Review of alloy and process development of TiAl alloys[J]. Intermetallics, 2006, 14: 1114
[5] Kim Y W.Ordered intermetallic alloys, part III: Gamma titanium aluminides[J]. JOM, 1994, 46(7): 30
[6] Asai S.Electromagnetic Processing of Materials[M]. Netherlands: Springer, 2012: 87
[7] Conrad H.Enhanced phenomena in metals with electric and magnetic fields: I electric fields[J]. Mater. Trans., 2005, 46: 1083
[8] Liao X L, Zhai Q J, Luo J, et al.Refining mechanism of the electric current pulse on the solidification structure of pure aluminum[J]. Acta Mater., 2007, 55: 3103
[9] Li X B, Lu F G, Cui H C, et al.Migration behavior of solidification nuclei in pure Al melt under effect of electric current pulse[J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 192
[10] Barnak J P, Sprecher A F, Conrad H.Colony (grain) size reduction in eutectic Pb-Sn castings by electroplusing[J]. Scr. Metall. Mater., 1995, 32: 879
[11] Nakada M, Shiohara Y, Flemings M C.Modification of solidification structures by pulse electric discharging[J]. ISIJ Int., 1990, 30: 27
[12] Misra A K.Effect of electric potentials on solidification of near eutectic Pb-Sb-Sn alloy[J]. Mater. Lett., 1986, 4: 176
[13] Liao X L, Zhai Q J, Song C J, et al.Effects of electric current pulse on stability of solid/liquid interface of Al-4.5wt.% Cu alloy during directional solidification[J]. Mater. Sci. Eng., 2007, A466: 56
[14] R?biger D, Zhang Y H, Galindo V, et al.The relevance of melt convection to grain refinement in Al-Si alloys solidified under the impact of electric currents[J]. Acta Mater., 2014, 79: 327
[15] Vashchenko K I, Chernega D F, Vorobev S L, et al.Effect of electric current on the solidification of cast iron[J]. Met. Sci. Heat Treat., 1974, 16: 261
[16] Feng X H, Yang Y S, Li Y J, et al.Effect of DC field on mechanical property of a Ni-based single crystal superalloy[J]. Acta Metall. Sin., 2006, 42: 947
[16] (冯晓辉, 杨院生, 李应举等. 直流电场对一种镍基单晶高温合金力学性能的影响[J]. 金属学报, 2006, 42: 947)
[17] Jiang H X, Zhao J Z, Wang C P, et al.Effect of electric current pulses on solidification of immiscible alloys[J]. Mater. Lett., 2014, 132: 66
[18] Zhou B L.Nonequilibrium processes in materials processing[J]. Chin. J. Mater. Res., 1997, 11: 576
[18] (周本濂. 材料制备中的非平衡过程 [J]. 材料研究学报, 1997,11: 576)
[19] Nie G.Microstructure and properties of electromagnetic cold crucible directionally solidified α2/γ laminar TiAl-based billets [D]. Harbin: Harbin Institute of Technology, 2012
[19] (聂革. 电磁冷坩埚定向凝固α2/γ片层TiAl基坯锭组织与性能 [D]. 哈尔滨: 哈尔滨工业大学, 2012)
[20] Yang J R.Heat transfer and microstructures and properties of high Nb containing TiAl alloys direction solidified by cold crucible [D]. Harbin: Harbin Institute of Technology, 2013
[20] (杨劼人. 高Nb-TiAl合金冷坩埚定向凝固传热特性及组织与性能 [D]. 哈尔滨: 哈尔滨工业大学, 2013)
[21] McNelley T R, Swaminathan S, Su J Q. Recrystallization mechanisms during friction stir welding/processing of aluminum alloys[J]. Scr. Mater., 2008, 58: 349
[22] Jung I S, Kim M C, Lee J H, et al.High temperature phase equilibria near Ti-50 at% Al composition in Ti-Al system studied by directional solidification[J]. Intermetallics, 1999, 7: 1247
[23] Jung I S, Jang H S, Oh M H, et al. Microstructure control of TiAl alloys containing β stabilizers by directional solidification [J]. Mater. Sci. Eng., 2002, A329-331: 13
[24] Fu H Z, Guo J J, Liu L, et al.Directional Solidification and Processing of Advanced Materials [M]. Beijing: Science Press, 2008: 16
[24] (傅恒志, 郭景杰, 刘林等. 先进材料定向凝固 [M]. 北京: 科学出版社, 2008: 16)
[25] Su Y Q, Liu C, Li X Z, et al.Microstructure selection during the directionally peritectic solidification of Ti-Al binary system[J]. Intermetallics, 2005, 13: 267
[26] Li X, Fautrelle Y, Ren Z M.Influence of thermoelectric effects on the solid-liquid interface shape and cellular morphology in the mushy zone during the directional solidification of Al-Cu alloys
[26] under a magnetic field[J]. Acta Mater., 2007, 55: 3803
[27] Hansen N.Hall-Petch relation and boundary strengthening[J]. Scr. Mater., 2004, 51: 801
[28] Yamamoto Y, Takeyama M.Physical metallurgy of single crystal gamma titanium aluminide alloys: orientation control and thermal stability of lamellar microstructure[J]. Intermetallics, 2005, 13: 965
[29] Ashby M F, Jones D R H. Engineering Materials [M]. Oxford: Pergamon Press, 1980: 105
[30] Sato Y S, Urata M, Kokawa H, et al.Hall-Petch relationship in friction stir welds of equal channel angular-pressed aluminium alloys[J]. Mater. Sci. Eng., 2003, A354: 298
[31] Pfann W G, Wagner R S.Principles of field freezing[J]. Trans. Metall. Soc. AIME, 1962, 224: 1139
[32] Prodhan A, Sivaramakrishnan C S, Chakrabarti A K.Solidification of aluminum in electric field[J]. Metall. Mater. Trans., 2001, 32B: 372
[1] 梅益, 孙全龙, 喻丽华, 王传荣, 肖华强. 基于GA-ELM的铝合金压铸件晶粒尺寸预测[J]. 金属学报, 2017, 53(9): 1125-1132.
[2] 李天瑞, 刘国怀, 徐莽, 牛红志, 付天亮, 王昭东, 王国栋. Ti-43Al-4Nb-1.5Mo合金包套锻造与热处理过程的微观组织及高温拉伸性能[J]. 金属学报, 2017, 53(9): 1055-1064.
[3] 刘国怀, 李天瑞, 徐莽, 付天亮, 李勇, 王昭东, 王国栋. 累积叠轧TC4钛合金的组织演化与力学性能[J]. 金属学报, 2017, 53(9): 1038-1046.
[4] 周野,毛萍莉,王志,刘正,王峰. Mg-7Zn-xCu-0.6Zr合金热裂行为的研究[J]. 金属学报, 2017, 53(7): 851-860.
[5] 张洪伟,秦学智,李小武,周兰章. 一种高硼定向凝固合金的初熔行为及其对力学性能的影响[J]. 金属学报, 2017, 53(6): 684-694.
[6] 谷倩倩, 阮莹, 朱海哲, 闫娜. 冷却速率对急冷Fe-Al-Nb三元合金凝固组织形成的影响[J]. 金属学报, 2017, 53(6): 641-647.
[7] 张玉妥,陈波,刘奎,李殿中,李依依. 低偏析技术的发展[J]. 金属学报, 2017, 53(5): 559-566.
[8] 童文辉,赵子龙,张新元,王杰,国旭明,段新华,刘豫. 球墨铸铁表面激光熔覆TiC/钴基合金组织和性能研究[J]. 金属学报, 2017, 53(4): 472-478.
[9] 王峰,董海阔,王志,毛萍莉,刘正. Mg-5Al-xCa合金的热裂行为[J]. 金属学报, 2017, 53(2): 211-219.
[10] 李宁,张蓉,张利民,邢辉,殷鹏飞,吴耀燕. 低压交流电脉冲下Al-7%Si合金晶粒细化机理研究[J]. 金属学报, 2017, 53(2): 192-200.
[11] 黄火根,徐宏扬,张鹏国,王英敏,柯海波,张培,刘天伟. 具有反常非晶形成能力的U-Cr二元合金[J]. 金属学报, 2017, 53(2): 233-238.
[12] 余建波, 侯渊, 张超, 杨志彬, 王江, 任忠鸣. 静磁场对新型Co-Al-W基高温合金定向凝固组织的影响[J]. 金属学报, 2017, 53(12): 1620-1626.
[13] 马德新, 王富, 温序晖, 孙德建, 刘林. CM247LC单晶高温合金中MC碳化物对γ/γ′共晶反应的影响[J]. 金属学报, 2017, 53(12): 1603-1610.
[14] 王国田, 丁宏升, 陈瑞润, 郭景杰, 傅恒志. 电流强度对冷坩埚定向凝固Ni3Al金属间化合物微观组织的影响[J]. 金属学报, 2017, 53(11): 1461-1468.
[15] 郑浩然, 陈民芳, 李祯, 由臣, 刘德宝. MgO改性HA对Mg-Zn-Zr/m-HA复合材料组织及性能的影响[J]. 金属学报, 2017, 53(10): 1364-1376.