Please wait a minute...
金属学报  2017, Vol. 53 Issue (5): 592-600    DOI: 10.11900/0412.1961.2016.00499
  论文 本期目录 | 过刊浏览 |
Cu/Sn-52In/Cu微焊点液-固电迁移行为研究
张志杰1,黄明亮2()
1 江苏科技大学材料科学与工程学院 镇江 212003
2 大连理工大学材料科学与工程学院 大连 116024
Liquid-Solid Electromigration Behavior of Cu/Sn-52In/Cu Micro-Interconnect
Zhijie ZHANG1,Mingliang HUANG2()
1 School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
2 School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
全文: PDF(8645 KB)   HTML
摘要: 

采用同步辐射实时成像技术对比研究了Cu/Sn-52In/Cu微焊点在120和180 ℃,2.0×104 A/cm2条件下液-固电迁移过程中In、Sn和Cu原子的扩散迁移行为及其对界面反应的影响。由于没有背应力,液-固电迁移条件下Sn-52In焊点中In原子的有效电荷数Z*为负值是其定向扩散迁移至阳极的物理本质,这与Sn-52In焊点固-固电迁移条件下背应力驱使In原子迁移至阴极的机理不同。基于液态金属焓随温度的变化关系,修正了计算液态金属Z*的理论模型,计算获得In原子在120和180 ℃下的Z*分别为-2.30和-1.14,为电迁移方向提供了判断依据。液-固电迁移过程中In和Cu原子同时由阴极扩散至阳极并参与界面反应使得界面金属间化合物(intermetallic compounds,IMC)生长表现为“极性效应”,即阳极界面IMC持续生长变厚,并且厚于阴极界面IMC,温度越高,界面IMC的“极性效应”越显著。液-固电迁移过程中阴极Cu基体的溶解与时间呈抛物线关系,温度越高,阴极Cu的溶解速率越快。

关键词 电迁移Sn-52In微焊点有效电荷数界面反应金属间化合物    
Abstract

Electromigration (EM), which describes the mass transport due to the momentum exchange between conducting electrons and diffusing metal atoms under an applied electric field, has become a serious reliability issue in high-density packaging. With the increasing demands for miniaturization, liquid-solid (L-S) EM will pose a critical challenge to the reliability of solder interconnects. In this work, The interfacial reactions and diffusion behaviors of In, Sn and Cu atoms in Cu/Sn-52In/Cu interconnects during L-S EM under a current density of 2.0×104 A/cm2 at 120 and 180 ℃ have been in situ studied by using synchrotron radiation real-time imaging technology. During L-S EM, since there was no back-stress, the In atoms directionally migrated toward the anode due to the negative effective charge number (Z*) of In, which is different from the In atoms directionally migrated toward the cathode due to the back-stress induced by the preferential migration of the Sn atoms over the In atoms toward the anode during the solid-solid (S-S) EM. Furthermore, a modified expression for calculating the effective charge number Z* of liquid metals was proposed based on the enthalpy changes of melting process. The Z* of In atoms was calculated to be -2.30 and -1.14 at 120 and 180 ℃, respectively, which was consistent with the migration behavior of In atoms. The model provides a theoretical basis for determining the direction of the EM. The polarity effect, evidenced by the IMC layer at the anode growing continuously while that at the cathode was restrained, was resulted from the directional migration of In and Cu atoms toward the anode during L-S EM, which was more significant at high temperature. The consumption of cathode Cu during L-S EM followed a parabolic relationship with the EM time, and the consumption rate was magnitude higher at high temperature. The migrations of In atoms was discussed in terms of diffusion flux.

Key wordselectromigration    Sn-52In micro-interconnect    effective charge number    interfacial reaction    intermetallic compound
收稿日期: 2016-11-10      出版日期: 2017-02-14
基金资助:国家自然科学基金项目Nos.51475072和51671046

引用本文:

张志杰,黄明亮. Cu/Sn-52In/Cu微焊点液-固电迁移行为研究[J]. 金属学报, 2017, 53(5): 592-600.
Zhijie ZHANG,Mingliang HUANG. Liquid-Solid Electromigration Behavior of Cu/Sn-52In/Cu Micro-Interconnect. Acta Metall Sin, 2017, 53(5): 592-600.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2016.00499      或      http://www.ams.org.cn/CN/Y2017/V53/I5/592

图1  Cu/Sn-52In/Cu线性焊点示意图
图2  初始Cu/Sn-52In/Cu焊点显微组织SEM像
图3  Cu/Sn-52In/Cu焊点在120 ℃、2.0×104 A/cm2条件下液-固电迁移过程中的同步辐射照片
图4  120 ℃、2.0×104 A/cm2液-固电迁移1 h后的Cu/Sn-52In/Cu焊点显微组织SEM像
图5  Cu/Sn-52In/Cu焊点在180 ℃、2.0×104 A/cm2条件下液-固电迁移过程中的同步辐射照片
图6  180 ℃、2.0×104 A/cm2液-固电迁移1 h后的Cu/Sn-52In/Cu焊点显微组织SEM像
图7  Cu/Sn-52In/Cu焊点在120和180 ℃、2.0×104 A/cm2条件下电迁移过程中阴极Cu基体溶解动力学曲线
图8  Cu/Sn-52In/Cu焊点液-固电迁移过程In原子扩散通量示意图
[1] Chen L D, Huang M L, Zhou S M.Effect of electromigration on intermetallic compound formation in line-type Cu/Sn/Cu interconnect[J]. J. Alloys Compd., 2010, 504: 535
[2] Jung Y, Yu J.Electromigration induced kirkendall void growth in Sn-3.5Ag/Cu solder joints[J]. J. Appl. Phys., 2014, 115: 083708
[3] Huang M L, Zhou S M, Chen L D.Electromigration-induced interfacial reactions in Cu/Sn/electroless Ni-P solder interconnects[J]. J. Electron. Mater., 2012, 41: 730
[4] Chen C, Tong H M, Tu K N.Electromigration and thermomigration in Pb-free flip-chip solder joints[J]. Annu. Rev. Mater. Res., 2010, 40: 531
[5] Huang M L, Ye S, Zhao N.Current-induced interfacial reactions in Ni/Sn-3Ag-0.5Cu/Au/Pd(P)/Ni-P flip chip interconnect[J]. J. Mater. Res., 2011, 26: 3009
[6] Chen C, Liang S W.Electromigration issues in lead-free solder joints[J]. J. Mater. Sci.: Mater. Electron., 2007, 18: 259
[7] Yeh E C C, Choi W J, Tu K N. Current-crowding-induced electromigration failure in flip chip solder joints[J]. Appl. Phys. Lett., 2002, 80: 580
[8] Cahoon J R.A modified “Hole” theory for solute impurity diffusion in liquid metals[J]. Metall. Mater. Trans., 1997, 28A: 583
[9] Hu Y C, Lin Y H, Kao C R, et al.Electromigration failure in flip chip solder joints due to rapid dissolution of copper[J]. J. Mater. Res., 2003, 18: 2544
[10] Liao C N, Chung C P, Chen W T.Electromigration-induced Pb segregation in eutectic Sn-Pb molten solder[J]. J. Mater. Res., 2005, 20: 3425
[11] Gu X, Chan Y C.Electromigration in line-type Cu/Sn-Bi/Cu solder joints[J]. J. Electron. Mater., 2008, 37: 1721
[12] Huang M L, Zhou Q, Zhao N, et al.Reverse polarity effect and cross-solder interaction in Cu/Sn-9Zn/Ni interconnect during liquid-solid electromigration[J]. J. Mater. Sci., 2014, 49: 1755
[13] Huang M L, Zhou Q, Zhao N, et al.Abnormal diffusion behavior of Zn in Cu/Sn-9wt.% Zn/Cu interconnects during liquid-solid electromigration[J]. J. Electron. Mater., 2013, 42: 2975
[14] Huang M L, Zhang Z J, Zhao N, et al.A synchrotron radiation real-time in situ imaging study on the reverse polarity effect in Cu/Sn-9Zn/Cu interconnect during liquid-solid electromigration[J]. Scr. Mater., 2013, 68: 853
[15] Huang M L, Zhang Z J, Zhao N, et al.In situ study on reverse polarity effect in Cu/Sn-9Zn/Ni interconnect undergoing liquid-solid electromigration[J]. J. Alloys Compd., 2015, 619: 667
[16] Huang J R, Tsai C M, Lin Y W, et al.Pronounced electromigration of Cu in molten Sn-based solders[J]. J. Mater. Res., 2008, 23: 250
[17] Daghfal J P, Shang J K.Current-induced phase partitioning in eu
[1] 吉华,邓运来,徐红勇,郭伟强,邓建峰,范世通. 焊接线能量对5182-O/HC260YD+Z异种材料CMT搭接接头组织与性能的影响[J]. 金属学报, 2019, 55(3): 376-388.
[2] 陈丽群, 邱正琛, 于涛. Ru对NiAl[100](010)刃型位错电子结构的影响[J]. 金属学报, 2019, 55(2): 223-228.
[3] 邱丰, 佟昊天, 沈平, 丛晓霜, 王轶, 姜启川. 综述:SiC/Al界面反应与界面结构演变规律及机制[J]. 金属学报, 2019, 55(1): 87-100.
[4] 黄明亮, 孙洪羽. 倒装芯片无铅凸点β-Sn晶粒取向与电迁移交互作用[J]. 金属学报, 2018, 54(7): 1077-1086.
[5] 张敏, 慕二龙, 王晓伟, 韩挺, 罗海龙. TA1/Cu/X65复合板焊接接头微观组织及力学性能[J]. 金属学报, 2018, 54(7): 1068-1076.
[6] 康慧君, 李金玲, 王同敏, 郭景杰. 定向凝固Al-Mn-Be合金初生金属间化合物相生长行为及力学性能[J]. 金属学报, 2018, 54(5): 809-823.
[7] 耿林, 吴昊, 崔喜平, 范国华. 基于箔材反应退火合成的TiAl基复合材料板材研究进展[J]. 金属学报, 2018, 54(11): 1625-1636.
[8] 于宣, 张志豪, 谢建新. 不同Ce含量Fe-6.5%Si合金的组织、有序结构和中温拉伸塑性[J]. 金属学报, 2017, 53(8): 927-936.
[9] 赵宁,邓建峰,钟毅,殷录桥. 热迁移下Ni/Sn-xCu/Ni微焊点钎焊界面金属间化合物的演变[J]. 金属学报, 2017, 53(7): 861-868.
[10] 王大伟,修世超. 焊接温度对碳钢/奥氏体不锈钢扩散焊接头界面组织及性能的影响[J]. 金属学报, 2017, 53(5): 567-574.
[11] 周丽,崔超,贾清,马英石. γ-TiAl金属间化合物铣削加工实验与有限元模拟[J]. 金属学报, 2017, 53(4): 505-512.
[12] 靳鹏,隋然,李富祥,俞伟元,林巧力. 熔融6061/4043铝合金在TC4钛合金表面的反应润湿[J]. 金属学报, 2017, 53(4): 479-486.
[13] 刘积厚,赵洪运,李卓霖,宋晓国,董红杰,赵一璇,冯吉才. Cu/Sn/Cu超声-TLP接头的显微组织与力学性能[J]. 金属学报, 2017, 53(2): 227-232.
[14] 刘洪喜,李正学,张晓伟,谭军,蒋业华. 热处理对钛合金表面激光原位合成高铌Ti-Al金属间化合物涂层高温抗氧化行为的影响[J]. 金属学报, 2017, 53(2): 201-210.
[15] 袁训华, 张启富. 22MnB5热成形钢奥氏体化时热镀Al-10%Si镀层组织的演化[J]. 金属学报, 2017, 53(11): 1495-1503.