Please wait a minute...
金属学报  2017, Vol. 53 Issue (7): 851-860    DOI: 10.11900/0412.1961.2016.00476
  本期目录 | 过刊浏览 |
Mg-7Zn-xCu-0.6Zr合金热裂行为的研究
周野,毛萍莉(),王志,刘正,王峰
沈阳工业大学材料科学与工程学院 沈阳 110870
Investigations on Hot Tearing Behavior of Mg-7Zn-xCu-0.6Zr Alloys
Ye ZHOU,Pingli MAO(),Zhi WANG,Zheng LIU,Feng WANG
School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
全文: PDF(4585 KB)   HTML
摘要: 

采用“T”型热裂模具研究了不同Cu含量对Mg-7Zn-xCu-0.6Zr (x=0、1、2、3)合金热裂行为的影响。利用XRD和SEM对Mg-7Zn-xCu-0.6Zr (x=0、1、2、3)合金进行了显微组织和热裂区域组织形貌观察。通过测量热裂纹体积表征了Mg-7Zn-xCu-0.6Zr (x=0、1、2、3)合金的热裂倾向性。实验结果表明,Mg-7Zn-xCu-0.6Zr (x=0、1、2、3)合金中随着Cu含量的增加,晶粒得到细化,晶界上的共晶相增多,共晶相在凝固末期对分离的枝晶起到补缩的作用,降低合金热裂倾向性。研究表明,Mg-7Zn-xCu-0.6Zr (x=0、1、2、3)合金微观裂纹的形成是液膜、凝固收缩补偿和晶间搭桥共同作用的结果。

关键词 Mg-Zn-Cu-Zr合金热裂行为凝固曲线微观组织    
Abstract

As one of the highest temperature magnesium alloys, Mg-Zn-Cu ternary alloys are draw much attention in recent years. However, the previous investigations were mainly focused on their microstructure and mechanical properties. The investigations on their solidification and hot tearing behaviors are barely discussed. In order to improve the industrial applications of Mg-Zn-Cu alloy, it is necessary to better understand the solidification pathways, phase constituent and hot tearing susceptibility (HTS) of these alloys. In this work, the effect of Cu additions on the hot tearing behaviors of Mg-7Zn-xCu-0.6Zr (x=0, 1, 2, 3) alloys was studied using with T type hot tearing mold. The microstructure and the morphology of cracking zone of Mg-7Zn-xCu-0.6Zr (x=0, 1, 2, 3) alloys were observed by XRD and SEM, respectively. The hot cracking susceptibility of Mg-7Zn-xCu-0.6Zr (x=0, 1, 2, 3) alloys were characterized by the measurement of crack volume. The experimental results show that the grain sizes of Mg-7Zn-0.6Zr alloys were refined by addition of Cu element. Meanwhile, the amount of eutectic phase was increased with increasing the Cu content and the separated dendritic was refilled by the eutectic phase. Hot tearing susceptibility of Mg-7Zn-0.6Zr was decreased with increasing of Cu content. The Mg-7Zn-0.6Zr and Mg-7Zn-1Cu-0.6Zr alloys were completely broken. The hot cracks of Mg-7Zn-xCu-0.6Zr (x=0, 1, 2, 3) alloys were formed by liquid film, solidification shrinkage and interdendritic bridge.

Key wordsMg-Zn-Cu-Zr alloy    hot tearing behavior    solidification curve    microstructure
收稿日期: 2016-10-25      出版日期: 2017-04-26
基金资助:国家自然科学基金项目Nos.51504153和51571145,以及辽宁省教育厅科学技术研究一般项目No.L2015397

引用本文:

周野,毛萍莉,王志,刘正,王峰. Mg-7Zn-xCu-0.6Zr合金热裂行为的研究[J]. 金属学报, 2017, 53(7): 851-860.
Ye ZHOU,Pingli MAO,Zhi WANG,Zheng LIU,Feng WANG. Investigations on Hot Tearing Behavior of Mg-7Zn-xCu-0.6Zr Alloys. Acta Metall Sin, 2017, 53(7): 851-860.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2016.00476      或      http://www.ams.org.cn/CN/Y2017/V53/I7/851

图1  热裂行为测试装置示意图
图2  枝晶相干温度Tcoh和枝晶相干点固相分数fscoh图
Alloy Tcoh / ℃ fscoh
Mg-7Zn-0.6Zr 619.1 0.32
Mg-7Zn-1Cu-0.6Zr 610.6 0.39
Mg-7Zn-2Cu-0.6Zr 599.6 0.51
Mg-7Zn-3Cu-0.6Zr 598.9 0.57
表1  Mg-7Zn-xCu-0.6Zr (x=0、1、2、3)合金的枝晶相干温度(Tcoh)和对应的固相分数(fscoh)
图3  Mg-7Zn-xCu-0.6Zr (x=0、1、2、3)合金的热分析曲线
图4  Mg-7Zn-xCu-0.6Zr (x=0、1、2、3)合金的XRD谱
Alloy α-Mg MgZnCu MgZn2
Mg-7Zn-0.6Zr 624.7 - 422.3
Mg-7Zn-1Cu-0.6Zr 620.1 529.5 432.6
Mg-7Zn-2Cu-0.6Zr 619.4 531.9 453.9
Mg-7Zn-3Cu-0.6Zr 616.9 532.5 457.4
表2  Mg-7Zn-xCu-0.6Zr (x=0、1、2、3)合金的各种反应的反应温度
图5  200和250 ℃时Mg-7Zn-xCu-0.6Zr (x=0、1、2、3)合金的热裂裂纹形貌
图6  Mg-7Zn-xCu-0.6Zr (x=0、1、2、3)合金的收缩力与温度曲线
图7  Mg-7Zn-xCu-0.6Zr (x=0、1、2、3)合金的OM像
图8  Mg-7Zn-xCu-0.6Zr (x=0、1、2、3)合金晶粒尺寸
图9  Mg-7Zn-xCu-0.6Zr (x=0、1、2、3)合金裂纹处断口SEM像
[1] Mao P L, Liu Z X, Liu Z, et al.Effect of grain size on adiabatic shear sensitivity of AZ31 magnesium alloy[J]. J Shenyang Univ. Technol., 2015, 37: 494
[1] (毛萍莉, 刘遵鑫, 刘正等. 晶粒大小对AZ31镁合金绝热剪切敏感性的影响[J]. 沈阳工业大学学报, 2015, 37: 494)
[2] Liu Z, Wang Y, Wang G Z, et al.Developing trends of research and application of magnesium alloys[J]. Chin. J Mater. Res., 2000, 14: 449
[2] (刘正, 王越, 王中光等. 镁基轻质材料的研究与应用[J]. 材料研究学报, 2000, 14: 449)
[3] Mordike B L, Ebert T.Magnesium: properties-applications-potential[J]. Mater. Sci. Eng., 2001, A302: 37
[4] Dahle A K, Lee Y C, Nave M D, et al.Development of the as-cast microstructure in magnesium-aluminium alloys[J]. J. Light Met., 2001, 1: 61
[5] Huang Z H, Liang S M, Chen R S, et al.Solidification pathways and constituent phases of Mg-Zn-Y-Zr alloys[J]. J. Alloys Compd., 2009, 468: 170
[6] Wang Y S, Sun B D, Wang Q D, et al.An understanding of the hot tearing mechanism in AZ91 magnesium alloy[J]. Mater. Lett., 2002, 53: 35
[7] Ding H, Fu H Z, Liu Z Y, et al.Compensation of solidification contraction and hot cracking tendency of alloy[J]. Acta Metall. Sin., 1997, 33: 921
[7] (丁浩, 傅恒志, 刘忠元等. 凝固收缩补偿与合金的热裂倾向[J]. 金属学报, 1997, 33: 921)
[8] Monroe C, Beckermann C. Development of a hot tear indicator for steel castings [J]. Mater. Sci. Eng., 2005, A413-414: 30
[9] Mathier V, Drezet J M, Rappaz M.Two-phase modelling of hot tearing in aluminium alloys using a semi-coupled approach[J]. Modell. Simul. Mater. Sci. Eng., 2007, 15: 121
[10] Xu R F.Study on hot tearing formation in hypoeutectic Al-Si alloys [D]. Ji'nan: Shandong University, 2014
[10] (许荣福. 亚共晶Al-Si合金热裂形成过程的研究 [D]. 济南: 山东大学, 2014)
[11] Huang Y G, Wu G H, Hou Z Q, et al.Hot crack susceptibility of Mg-Gd-Y-Zr magnesium alloy[J]. Spec. Cast. Nonferrous Alloys, 2009, 29: 181
[11] (黄玉光, 吴国华, 侯正全等. Mg-Gd-Y-Zr合金的热裂性能[J]. 特种铸造及有色合金, 2009, 29: 181)
[12] Eskin D G, Suyitno, Katgerman L.Mechanical properties in the semi-solid state and hot tearing of aluminium alloys[J]. Prog. Mater. Sci., 2004, 49: 629
[13] Novikov I I, Grushko O E.Hot cracking susceptibility of Al-Cu-Li and Al-Cu-Li-Mn alloys[J]. Mater. Sci. Technol., 1995, 11: 926
[14] Ding H, Fu H Z, Luo S Z, et al.Influence of composition on hot cracking tendency of directionally solidified Al-Cu alloy[J]. Acta Metall. Sin., 1995, 31: 376
[14] (丁浩, 傅恒志, 罗栓柱等. 化学成分对定向凝固Al-Cu合金热裂倾向的影响[J]. 金属学报, 1995, 31: 376)
[15] Cao G, Kou S.Hot cracking of binary Mg-Al alloy castings[J]. Mater. Sci. Eng., 2006, A417: 230
[16] Cao G, Kou S.Hot tearing of ternary Mg-Al-Ca alloy castings[J]. Metall. Mater. Trans., 2006, 37A: 3647
[17] Cao G, Haygood I, Kou S.Onset of hot tearing in ternary Mg-Al-Sr alloy castings[J]. Metall. Mater. Trans., 2010, 41A: 2139
[18] Zhen Z S, Hort N, Utke O, et al.Investigations on hot tearing of Mg-Al binary alloys by using a new quantitative method [A]. Magnesium Technology[M]. San Francisco, California, USA: Wiley, 2009: 105
[19] Zhou L.Investigations on hot tearing susceptibility and mechanism of Mg-Zn-(Al) alloys [D]. Shenyang: Shenyang University of Technology, 2011
[19] (周乐. Mg-Zn-(Al)系合金热裂敏感性及其微观机理研究 [D]. 沈阳: 沈阳工业大学, 2011)
[20] Zhang S B.Investigations on testing methods and hot tearing susceptibility of Mg-Zn-Y alloys [D]. Shenyang: Shenyang University of Technology, 2014
[20] (张斯博. Mg-Zn-Y合金热裂行为测试研究 [D]. 沈阳: 沈阳工业大学, 2014)
[21] Unsworth W.New magnesium alloy for automobile applications[J]. Light Met. Age, 1987, 45: 10
[22] Chen X Q, Liu J W, Luo C P.Research status and development trend of Mg-Zn alloys with high strength[J]. Mater. Rev., 2008, 22(5): 58
[22] (陈晓强, 刘江文, 罗承萍. 高强度Mg-Zn系合金的研究现状与发展趋势[J]. 材料导报, 2008, 22(5): 58)
[23] Li X.Precipitation behavior of cast ZC62 magnesium alloy [D]. Guangzhou: South China University of Technology, 2006
[23] (李萧. 铸造ZC62镁合金显微组织与力学性能的研究 [D]. 广州: 华南理工大学, 2006)
[24] Li X, Liu J W, Luo C P.Precipitation behavior of cast ZC62 magnesium alloy[J]. Acta Metall. Sin., 2006, 42: 733
[24] (李萧, 刘江文, 罗承萍. 铸造ZC62镁合金的时效行为[J]. 金属学报, 2006, 42: 733)
[25] Zhao C.Study on microstructures and properties of Mg-Zn-Cu-Ce alloys [D]. Chongqing: Chongqing University, 2012
[25] (赵冲. Mg-Zn-Cu-Ce合金组织与性能研究 [D]. 重庆: 重庆大学, 2012)
[26] Zhu H M.A study of the aging behavior, microstructures and mechanical properties of cast Mg-6Zn-xCu-0.6Zr (x=0-2.0) alloys [D]. Guangzhou: South China University of Technology, 2011
[26] (朱红梅. Mg-6Zn-xCu-0.6Zr (x=0-2.0)铸造镁合金的时效行为、显微组织及力学性能研究 [D]. 广州: 华南理工大学, 2011)
[27] Unsworth W.New magnesium alloy for automobile applications[J]. Light Met. Age, 1987, 8: 10
[28] Shankar S, Riddle Y W, Makhlouf M M.Nucleation mechanism of the eutectic phases in aluminum-silicon hypoeutectic alloys[J]. Acta Mater., 2004, 52: 4447
[29] Huang Z H, Zhao H, Lv L Q, et al.Thermal analysis and its application[J]. Hot Working Technol., 2010, 39(7): 19
[29] (黄张洪, 赵惠, 吕利强等. 热分析技术及其应用[J]. 热加工工艺, 2010, 39(7): 19)
[30] Liu Z, Zhang S B, Mao P L, et al.Effects of Y on hot tearing formation mechanism of Mg-Zn-Y-Zr alloys[J]. Mater. Sci. Technol., 2014, 30: 1214
[31] Dahle A K, Stjohn D H.Rheological behaviour of the mushy zone and its effect on the formation of casting defects during solidification[J]. Acta Mater., 1998, 47: 31
[32] Hou D H.Solidification path, dendrite growth restriction factor and grain size of cast Mg-Al-Zn alloy [D]. Dalian: Dalian University of Technology, 2015
[32] (侯丹辉. 铸造Mg-Al-Zn系合金的凝固路径、枝晶生长约束因子及晶粒尺寸 [D]. 大连: 大连理工大学, 2015)
[33] Zheng L J, Wang C H, Hou L Z, et al.Effect of equal-channel angular pressing on microstructure and mechanical properties of AM50 magnesium alloy[J]. Chin. J. Rare Met., 2005, 29: 615
[33] (郑立静, 王春晖, 侯亮卓等. 热加工对铸造AM50镁合金显微结构和力学性能的影响[J]. 稀有金属, 2005, 29: 615)
[34] Liu C F.Research on microstructures and mechanical properties of Mg-Zn-Cu alloys [D]. Shenyang: Northeastern University, 2013
[34] (刘长富. Mg-Zn-Cu合金显微组织和力学性能研究 [D]. 沈阳: 东北大学, 2013)
[35] Wang Z, Song J F, Huang Y D, et al.An investigation on hot tearing of Mg-4.5Zn-(0.5Zr) alloys with Y additions[J]. Metall. Mater. Trans., 2015, 46A: 2108
[1] 马晋遥,王晋,赵云松,张剑,张跃飞,李吉学,张泽. 一种第二代镍基单晶高温合金1150 ℃原位拉伸断裂机制研究[J]. 金属学报, 2019, 55(8): 987-996.
[2] 刘耀鸿,王朝辉,刘轲,李淑波,杜文博. Er对Mg-5Zn-xEr镁合金热裂敏感性的影响[J]. 金属学报, 2019, 55(3): 389-398.
[3] 邵成伟, 惠卫军, 张永健, 赵晓丽, 翁宇庆. 一种新型高强度高塑性冷轧中锰钢的组织和力学性能[J]. 金属学报, 2019, 55(2): 191-201.
[4] 姚彦桃, 陈礼清, 王文广. 原位反应浸渗法制备(B4C+Ti)混杂增强Mg及AZ91D复合材料及其阻尼性能[J]. 金属学报, 2019, 55(1): 141-148.
[5] 赵晓丽, 张永健, 邵成伟, 惠卫军, 董瀚. 两相区退火处理冷轧0.1C-5Mn中锰钢的氢脆敏感性[J]. 金属学报, 2018, 54(7): 1031-1041.
[6] 翟斌, 周凯, 吕鹏, 王海鹏. 自由落体条件下Ti-6Al-4V合金微液滴的快速凝固研究[J]. 金属学报, 2018, 54(5): 824-830.
[7] 李金富, 周尧和. 液态金属深过冷快速凝固过程中初生固相的重熔[J]. 金属学报, 2018, 54(5): 627-636.
[8] 康慧君, 李金玲, 王同敏, 郭景杰. 定向凝固Al-Mn-Be合金初生金属间化合物相生长行为及力学性能[J]. 金属学报, 2018, 54(5): 809-823.
[9] 马歌, 左秀荣, 洪良, 姬颖伦, 董俊媛, 王慧慧. 深海用X70管线钢焊接接头腐蚀行为研究[J]. 金属学报, 2018, 54(4): 527-536.
[10] 熊守美, 杜经莲, 郭志鹏, 杨满红, 吴孟武, 毕成, 曹永友. 镁合金压铸过程界面传热行为及凝固组织结构的表征与模拟研究[J]. 金属学报, 2018, 54(2): 174-192.
[11] 于菁, 王继杰, 倪丁瑞, 肖伯律, 马宗义, 潘兴龙. 电子束熔丝沉积快速成形2319铝合金的微观组织与力学性能[J]. 金属学报, 2018, 54(12): 1725-1734.
[12] 李斌, 林小辉, 李瑞, 张国君, 李来平, 张平祥. 不同B含量Mo-Si-B合金的高温抗氧化性能[J]. 金属学报, 2018, 54(12): 1792-1800.
[13] 梅益, 孙全龙, 喻丽华, 王传荣, 肖华强. 基于GA-ELM的铝合金压铸件晶粒尺寸预测[J]. 金属学报, 2017, 53(9): 1125-1132.
[14] 李天瑞, 刘国怀, 徐莽, 牛红志, 付天亮, 王昭东, 王国栋. Ti-43Al-4Nb-1.5Mo合金包套锻造与热处理过程的微观组织及高温拉伸性能[J]. 金属学报, 2017, 53(9): 1055-1064.
[15] 刘国怀, 李天瑞, 徐莽, 付天亮, 李勇, 王昭东, 王国栋. 累积叠轧TC4钛合金的组织演化与力学性能[J]. 金属学报, 2017, 53(9): 1038-1046.