Please wait a minute...
金属学报  2017, Vol. 53 Issue (6): 743-750    DOI: 10.11900/0412.1961.2016.00463
  本期目录 | 过刊浏览 |
取向硅钢低温加热工艺中渗氮工序的实验与数值模拟研究
曾贵民1,罗海文1(),李军2,龚坚3,黎先浩3,王现辉3
1 北京科技大学冶金与生态工程学院 北京 100083
2 安泰科技股份有限公司功能材料事业部 北京 1000813 首钢股份公司迁安钢铁公司 迁安 064404
Experimental Studies and Numerical Simulation on the Nitriding Process of Grain-Oriented Silicon Steel
Guimin ZENG1,Haiwen LUO1(),Jun LI2,Jian GONG3,Xianhao LI3,Xianhui WANG3
1 School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 Functional Materials Branch, Advanced Technology and Materials Co. Ltd., Beijing 100081, China
3 Qian'an Steel Corp., Shougang Co. Ltd., Qian'an 064404, China
全文: PDF(1318 KB)   HTML  
摘要: 

通过在实验室模拟取向硅钢的渗氮生产工序,实测了不同渗氮时间下的渗氮量,并通过EPMA、FESEM等观察了渗氮后氧化层的变化、N在硅钢带厚度方向的浓度梯度。根据实测的组织形貌和渗氮动力学特点,首次建立了针对取向硅钢的渗氮动力学模型,并成功地进行了数值模拟计算。研究结果表明:(1) 取向硅钢带的平均N含量在渗氮初期增加缓慢,之后逐渐加快,直至90 s时渗氮速率达到最大值之后保持恒定;在750 ℃渗氮2 min时间内,在近表面0.04 mm范围内存在显著的N浓度梯度;(2) 脱碳退火后,取向硅钢的氧化层主要为层状氧化物,渗氮时氧化层被H2还原,层状氧化物转变为球状,氧化层的变化对渗氮动力学影响显著;(3) 分析了N由气相穿过表面氧化层至Fe基体的传质系数所遵循的可能模型,发现只有当传质系数遵循氧化层还原动力学模型时,即Avrami函数模型f=A(1-exp(-ktn)),计算结果才能与实测的渗氮动力学特征高度吻合。

关键词 取向硅钢数值模拟渗氮动力学扩散    
Abstract

Grain-oriented silicon steel (GOSS) is an important functional material used as lamination cores in various transformers. Its magnetic properties are strongly dependent on the sharpness of Goss texture, which is developed during the secondary recrystallization annealing of product. In order to save energy and reduce cut-down operation costs, Nippon steel first lowered the slab-reheating temperature from 1350~1400 ℃ to 1150 ℃ and adopted the nitriding process to form nitride inhibitors before recrysta-llization annealing in 1970s. In this new process, nitriding is the critical process because it controls the size, distribution and volume fraction of nitride precipitates, which then determines the subsequent deve-lopment of Goss texture. Although it is of great importance for good quality control of industrial GOSS product, unfortunately, a quantitative mathematic modeling on nitriding kinetics is still in lack. In this work, nitriding kinetics were both measured experimentally and simulated by modeling. The N contents after various nitriding periods and N concentration gradient across thickness were both measured. It has been found that the N content increases slowly at the beginning of 60 s and then much more rapidly during nitriding. There exists a sharp N concentration gradient within the depth of 0.03 mm to the steel sheet surface, which diminishes after about 0.04 mm depth. With the different assumptions on N-transfer coefficient from gas to the steel matrix, the first mathematic modeling on nitriding kinetics of GOSS has been successfully established and solved numerically. The simulation results suggest that only when the N-transfer coefficient, f, changes with time following the Avrami function, f=A(1-exp(-ktn)), the calculated nitriding kinetics are consistent with the measurements. Such an Avrami-type dependence results from the reduction kinetics of oxide layer on the surface of silicon steel sheet during nitriding, in which both plate-like and spherical oxides were observed at the beginning but most of them became spherical after nitriding.

Key wordsgrain-oriented silicon steel    numerical simulation    nitriding    kinetics    diffusion
收稿日期: 2016-10-18      出版日期: 2017-03-13

引用本文:

曾贵民,罗海文,李军,龚坚,黎先浩,王现辉. 取向硅钢低温加热工艺中渗氮工序的实验与数值模拟研究[J]. 金属学报, 2017, 53(6): 743-750.
Guimin ZENG,Haiwen LUO,Jun LI,Jian GONG,Xianhao LI,Xianhui WANG. Experimental Studies and Numerical Simulation on the Nitriding Process of Grain-Oriented Silicon Steel. Acta Metall, 2017, 53(6): 743-750.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2016.00463      或      http://www.ams.org.cn/CN/Y2017/V53/I6/743

图1  750 ℃渗氮时取向硅钢薄带的实测N含量与渗氮时间的关系
图2  渗氮不同时间硅钢薄带厚度方向N浓度梯度的EPMA线扫描结果
图3  冷轧取向硅钢薄带脱碳退火和渗氮后的显微组织及EDS分析结果
图4  界面反应控制的渗氮过程示意图
图5  N传质系数f为常数时计算出的渗氮动力学曲线
图6  f=a/t时计算得到的渗氮动力学曲线
图7  渗氮时f与时间的不同函数关系
图8  根据f=A(1-exp(-ktn))模型计算出的渗氮动力学曲线与实验结果的对比
图9  计算得到的渗氮后硅钢薄带中N浓度梯度与通过EPMA实测得到N浓度梯度的对比
[1] He Z Z, Zhao Y, Luo H W.Electrical Steel [M]. Beijing: Metallurgical Industry Press, 2012: 1
[1] (何忠治, 赵宇, 罗海文. 电工钢[M]. 北京: 冶金工业出版社, 2012: 1)
[2] Ushigami Y, Mizokami Y, Fujikura M, et al. Recent development of low-loss grain-oriented silicon steel [J]. J. Magn. Magn. Mater., 2003, 254-255: 307
[3] Goss N P.Electrical sheet and method and apparatus for its manufacture and test [P]. US Pat, 1965559A, 1934
[4] Li J, Sun Y, Zhao Y.Development of low temperature slab reheating technique for grain-oriented silicon steel[J]. Iron Steel, 2007, 42(10): 72
[4] (李军, 孙颖, 赵宇. 取向硅钢低温铸坯加热技术的研发进展[J]. 钢铁, 2007, 42(10): 72)
doi: 10.3321/j.issn:0449-749x.2007.10.018
[5] Kumano T, Haratani T, Fujii N.Effect of nitriding on grain oriented silicon steel bearing aluminum[J]. ISIJ Int., 2005, 45: 95
[6] Lee S C, Han C H, Woo J S, et al.Hot rolling annealing; cold rolling decarbonization; controlling concentration [P]. US Pat, 6451128, 2002
[7] Takahashi N, Harase J. Recent development of technology of grain oriented silicon steel [J]. Mater. Sci. Forum, 1996,204-206: 143
doi: 10.4028/www.scientific.net/MSF.204-206.143
[8] Kubota T, Fujikura M, Ushigami Y. Recentprogress and future trend on grain-oriented silicon steel [J]. J. Magn. Magn. Mater., 2000, 215-216: 69
doi: 10.1016/S0304-8853(00)00069-X
[9] Lobanov M L.Nitriding of Fe-3%Si alloy[J]. Steel Trans., 2015, 45: 94
[10] Morawiec A.On abnormal growth of Goss grains in grain-oriented silicon steel[J]. Scr. Mater., 2011, 64: 466
doi: 10.1016/j.scriptamat.2010.11.013
[11] Kumano T, Ohata Y, Fujii N, et al.Effect of nitriding on grain oriented silicon steel bearing aluminum (the second study)[J]. J. Magn. Magn. Mater., 2006, 304: e602
doi: 10.1016/j.jmmm.2006.02.188
[12] Abbruzzese G, Campopiano A.A general theory of secondary recrystallization in grain oriented Fe-Si: Metallurgical parameters controlling the microstructural evolution[J]. J. Magn. Magn. Mater., 1994, 133: 123
doi: 10.1016/0304-8853(94)90505-3
[13] Thermocalc: thermo-calc software TCFE8 steel/Fe-database. Version2015b [EB/OL]. 2015,
[14] Wang R P, Liu J, Mao J H, et al.Influence of nitriding modes and ammonia on nitrogen content of oriented silicon steel[J]. Heat Treat. Met., 2009, 34(10): 69
[14] (王若平, 刘静, 毛炯辉等. 渗氮方式及氨气对取向硅钢氮含量的影响[J]. 金属热处理, 2009, 34(10): 69)
doi: 10.3969/j.issn.1674-3970.2014.03.010
[15] Toda H, Sato K, Komatsubara M.Characterization of internal oxide layers in 3%Si grain-oriented steel by electrochemical methods[J]. J. Mater. Eng. Perform, 1997, 6: 722
[16] Song H J, Yang P, Mao W M.Nitrogen behavior during nitriding treatment of electrical steel[J]. Heat Treat. Met., 2012, 37(1): 38
[16] (宋惠军, 杨平, 毛卫民. 电工钢渗氮的氮行为[J]. 金属热处理, 2012, 37(1): 38)
[17] Yan G C, He C X, Meng L, et al.Structure of surface oxide layer and effect on nitriding of grain-oriented silicon steel[J]. J. Mater. Eng., 2015, 43(12): 89
[17] (严国春, 何承绪, 孟力等. 取向硅钢表面氧化层的结构及其对渗氮的影响[J]. 材料工程, 2015, 43(12): 89)
doi: 10.11868/j.issn.1001-4381.2015.12.015
[18] Jung S, Kwon M S, Park J, et al.A TEM study of oxide layers formed during decarburization annealing of electrical steel[J]. ISIJ Int., 2011, 51: 1163
doi: 10.2355/isijinternational.51.1163
[19] Guan C, Li J, Tan N, et al.Reduction of oxide scale on hot-rolled steel by hydrogen at low temperature[J]. Int. J. Hydrogen Energy, 2014, 39: 15116
doi: 10.1016/j.ijhydene.2014.07.024
[20] Hudson R M.Nonacidic descaling of hot band——Part II: Reduction of scale by hydrogen or carbon[J]. Met. Finish., 1985, 83(12): 59
[21] Hudson R M.Nonacidic descaling of hot band: Reduction of scale by hydrogen or carbon[J]. Met. Finish., 1985, 83(11): 73
[22] Sproge L, ?gren J.Experimental and theoretical studies of gas consumption in the gas carburizing process[J]. J. Heat Treat., 1988, 6: 9
doi: 10.1007/BF02833160
[23] Hillert M, translated by Lai H Y, Liu G X. Diffusion in Alloys and Thermodynamics [M]. Beijing: Metallurgy Industry Press, 1984: 6
[23] (Hillert M著, 赖和怡, 刘国勋译. 合金扩散和热力学 [M]. 北京: 冶金工业出版社, 1984: 6)
[24] Rozendaal H C F, Mittemeijer E J, Colijn P F, et al. The development of nitrogen concentration profiles on nitriding iron[J]. Metall. Trans., 1983, 14A: 395
doi: 10.1007/BF02644217
[25] Nakada N, Tsuboi K, Onomoto T, et al.Thermodynamics and kinetics of solution nitriding[J]. Calphad, 2014, 47: 168
doi: 10.1016/j.calphad.2014.09.006
[26] Pineau A, Kanari N, Gaballah I.Kinetics of reduction of iron oxides by H2: Part I: Low temperature reduction of hematite[J]. Thermochim. Acta, 2006, 447: 89
doi: 10.1016/j.tca.2005.10.004
[27] Liao C C, Hou C K.Effect of nitriding time on secondary recrystallization behaviors and magnetic properties of grain-oriented electrical steel[J]. J. Magn. Magn. Mater., 2010, 322: 434
doi: 10.1016/j.jmmm.2009.09.072
[1] 丁雨田,高钰璧,豆正义,高鑫,刘德学,贾智. 形变诱导GH3625合金热挤压管材δ相的析出行为[J]. 金属学报, 2017, 53(6): 695-702.
[2] 王大伟,修世超. 焊接温度对碳钢/奥氏体不锈钢扩散焊接头界面组织及性能的影响[J]. 金属学报, 2017, 53(5): 567-574.
[3] 陈树君,徐斌,蒋凡. 变极性等离子弧焊电弧物理特性的数值模拟[J]. 金属学报, 2017, 53(5): 631-640.
[4] 李俊,刘文朋,任伊宾,沈明钢,杨柯. 物理真空去合金法制备微米级多孔不锈钢[J]. 金属学报, 2017, 53(5): 524-530.
[5] 张清东,林潇,曹强,卢兴福,张勃洋,胡树山. 冷轧高强钢板淬火过程板形瓢曲缺陷演变规律研究[J]. 金属学报, 2017, 53(4): 385-396.
[6] 李青,王资兴,谢树元. 电渣重熔全过程的数学模型开发及过程模拟研究[J]. 金属学报, 2017, 53(4): 494-504.
[7] 王晨充,张弛,杨志刚,苏杰,翁宇庆. 高Co-Ni二次硬化钢的设计准则与时效工艺分析[J]. 金属学报, 2017, 53(2): 175-182.
[8] 刘成松,叶飞. 热处理过程中界面固相反应控制锰硅类氧化物变性的机理研究[J]. 金属学报, 2017, 53(1): 10-18.
[9] 李军,葛鸿浩,GE Honghao,WU Menghuai,李建国. 基于热溶质对流及晶粒运动的柱状晶-非球状等轴晶混合三相模型*[J]. 金属学报, 2016, 52(9): 1096-1104.
[10] 何承绪,杨富尧,严国春,孟利,马光,陈新,毛卫民. 常化处理对薄规格取向硅钢织构的影响*[J]. 金属学报, 2016, 52(9): 1063-1069.
[11] 刘远荣,陈伟民,汤颖,杜勇,张利军. 实用型数值回归法在三元铝合金互扩散系数计算中的应用*[J]. 金属学报, 2016, 52(8): 1009-1016.
[12] 陈瑞,许庆彦,柳百成. Al-Mg-Si合金中针棒状析出相时效析出动力学及强化模拟研究*[J]. 金属学报, 2016, 52(8): 987-999.
[13] 徐斌,胡庆贤,陈树君,蒋凡,王晓丽. K-PAW准稳态过程小孔与熔池动态行为的数值模拟*[J]. 金属学报, 2016, 52(7): 804-810.
[14] 邓德安,张彦斌,李索,童彦刚. 固态相变对P92钢焊接接头残余应力的影响*[J]. 金属学报, 2016, 52(4): 394-402.
[15] 钟玉洁,戴洪斌,王平. 水合肼制氢Ni-Pt/La2O3催化剂研制及其反应动力学研究*[J]. 金属学报, 2016, 52(4): 505-512.