Please wait a minute...
金属学报  2017, Vol. 53 Issue (7): 769-777    DOI: 10.11900/0412.1961.2016.00426
  本期目录 | 过刊浏览 |
基于分形维数的模具钢电渣重熔铸坯碳偏析形貌特征研究
侯自兵(),曹江海,常毅,王伟,陈晗
重庆大学材料科学与工程学院 重庆 400044
Morphology Characteristics of Carbon Segregation in Die Steel Billet by ESR Based on Fractal Dimension
Zibing HOU(),Jianghai CAO,Yi CHANG,Wei WANG,Han CHEN
College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
引用本文:

侯自兵,曹江海,常毅,王伟,陈晗. 基于分形维数的模具钢电渣重熔铸坯碳偏析形貌特征研究[J]. 金属学报, 2017, 53(7): 769-777.
Zibing HOU, Jianghai CAO, Yi CHANG, Wei WANG, Han CHEN. Morphology Characteristics of Carbon Segregation in Die Steel Billet by ESR Based on Fractal Dimension[J]. Acta Metall Sin, 2017, 53(7): 769-777.

全文: PDF(1595 KB)   HTML
  
摘要: 

引入分形维数,从面积数目与轮廓形貌2个方面对铸坯内不同位置的偏析特征展开定量化分析。结果表明,铸坯的整体偏析程度主要受大偏析点影响,且大偏析点越大或越多,偏析率越大;铸坯内偏析点形貌具有分形特征,且分形维数可以作为衡量区域内偏析点弥散程度的一个重要指标,即分形维数越大,偏析点分布越为弥散,大偏析点逐渐向小偏析点转变;在柱状晶等轴晶转变区与凝固终点等轴晶区,偏析点的分形维数相对较小。

关键词 偏析分形维数模具钢电渣重熔    
Abstract

Macro/semi-macro carbon segregation plays a key role for improving the steel product quality. Based on macrostructure qualitative rating comparison and element macro content analysis, the segregation extent has been controlled at different levels by the existing technologies, but there is an obvious shortcoming on segregation morphology description. Nowadays, delicacy control is demanded for higher quality requirement, especially for the production of high-quality H13 die steel by electro-slag remelting (ESR) technique. In this work, as to segregation point morphology, fractal dimension is introduced, and segregation characteristics of different locations in the ESR billet are quantitatively investigated in terms of area, number and outline morphology. The size of the billet is 160 mm×160 mm, and the sampling location in the central plane of billet. Two melting rates (350 and 400 kg/h) are considered for studying essential characteristics of segregation. Firstly, it is shown that the whole segregation extent in the billet is mostly influenced by the large segregation point (e.g., the area is larger than 0.1 mm2). The segregation ratio will be increased when increasing the number or area of the large segregation point. Secondly, it is found that fractal is a very important characteristic of the segregation point morphology in the billet. Moreover, fractal dimension can be used as a criterion for measuring the dispersion degree of the segregation. The dispersion degree will be increased when increasing the corresponding fractal dimension, and the large segregation point will be disintegrated by the small segregation point. Finally, the fractal dimensions in the columnar-equiaxed transition area and the solidifying end equiaxed area are less than the value of other locations. In addition, more researches are needed for accurately obtaining the influence factors of fractal dimensions of segregation point in the future.

Key wordssegregation    fractal dimension    die steel    electro-slag remelting
收稿日期: 2016-09-26     
基金资助:国家自然科学基金项目No.51504047和中央高校基本科研业务费项目No.CDJPY14130001
图1  铸坯中心纵断面取样位置示意图
图2  I、II、III 3类不同大小偏析点示意图
图3  熔速为350 kg/h时铸坯内部不同位置的低倍组织
图4  熔速为400 kg/h时铸坯内部不同位置的低倍组织
图5  不同熔速下不同位置的偏析率
图6  不同位置I、II、III 3类偏析点的面积比
图7  不同位置I、II、III 3类偏析点的数目比
图8  偏析率与I类偏析面积比和数目比的变化关系
图9  熔速为350 kg/h时1#试样lnP-lnA关系图
Sample No. 350 kgh-1 400 kgh-1
D R2 D R2
1 1.799 0.9779 1.822 0.9109
2 1.760 0.9807 1.779 0.9697
3 1.760 0.9818 1.769 0.9688
4 1.755 0.9820 1.786 0.9731
5 1.760 0.9761 1.785 0.9729
6 1.747 0.9724 1.790 0.9704
7 1.757 0.9738 1.775 0.9726
8 1.755 0.9783 1.796 0.9718
9 1.762 0.9823 1.804 0.9701
10 1.742 0.9841 1.788 0.9719
11 1.735 0.9824 1.781 0.9651
12 1.767 0.9787 1.793 0.9680
表1  不同熔速下不同位置的分形维数D及对应的拟合系数R2
图10  不同熔速下不同位置的分形维数
图11  偏析率、偏析点平均面积与分形维数的关系
图12  熔速为350和400 kg/h时I、II、III 3类偏析点面积比与分形维数的关系
图13  熔速为350和400 kg/h时I、II、III 3类偏析点数目比与分形维数的关系
图14  熔速为350和400 kg/h时不同位置偏析点总数目与分形维数的关系
图15  铸坯内不同位置的局部凝固时间
图16  分形维数与局部凝固时间的关系
[1] Li Z B.Electroslag Metallurgy Theory and Practice [M]. Beijing: Metallurgical Industry Press, 2010: 76
[1] (李正邦. 电渣冶金的理论与实践 [M]. 北京: 冶金工业出版社, 2010: 76)
[2] Kubin M, Scheriau A, Knabl M, et al.Electro slag rapid remelting (ESRR?)——A novel technology for the production of high-quality, near-net-shaped billets and blooms [A]. 2014 AISTech Conference Proceedings[C]. Indianapolis: Association for Iron and Steel Technology, 2014: 1405
[3] Wang M, Ma D S, Liu Z T, et al.Effect of Nb on segregation, primary carbides and toughness of H13 steel[J]. Acta Metall. Sin., 2014, 50: 285
[3] (王明, 马党参, 刘振天等. Nb对芯棒用H13钢偏析、液析碳化物及力学性能的影响[J]. 金属学报, 2014, 50: 285)
[4] Flemings M C.Our understanding of macrosegregation: Past and present[J]. ISIJ Int., 2000, 40: 833
[5] Lesoult G. Macrosegregation in steel strands and ingots: Characterisation, formation and consequences [J]. Mater. Sci. Eng., 2005, A413-414: 19
[6] Cai Z Z, Zhu M Y.Microsegregation of solute elements in solidifying mushy zone of steel and its effect on longitudinal surface cracks of continuous casting strand[J]. Acta Metall. Sin., 2009, 45: 949
[6] (蔡兆镇, 朱苗勇. 钢凝固两相区溶质元素的微观偏析及其对连铸坯表面纵裂纹的影响[J]. 金属学报, 2009, 45: 949)
[7] Han Z Q, Cai K K.Study on a mathematical model of microsegregation in continuously cast slab[J]. Acta Metall. Sin., 2000, 36: 869
[7] (韩志强, 蔡开科. 连铸坯中微观偏析的模型研究[J]. 金属学报, 2000, 36: 869)
[8] Yuan X F, Sun S Q.Introduce the standard figure of GB/T 1979-2001 structure steel macrostructure and defect[J]. Metall. Standard. Qual., 2002, 40(6): 8
[8] (袁辛芳, 孙时秋. GB/T 1979-2001 结构钢低倍组织缺陷评级图介绍[J]. 冶金标准化与质量, 2002, 40(6): 8)
[9] Cai K K.Quality Control of Continuously Cast Steel [M]. Beijing: Metallurgical Industry Press, 2010: 283
[9] (蔡开科. 连铸坯质量控制 [M]. 北京: 冶金工业出版, 2010: 283)
[10] Mandelbrot B.How long is the coast of Britain? Statistical self-similarity and fractional dimension[J]. Science, 1967, 156: 636
[11] Mandelbrot B B.The Fractal Geometry of Nature[M]. San Francisco: Freeman, 1982: 206
[12] Chen Y, Chen L.Fractal Geometry [M]. 2nd Ed., Beijing: Seismological Press, 2005: 1
[12] (陈颙, 陈凌. 分形几何学 [M]. 第2版, 北京: 地震出版社, 2005: 1)
[13] Liu D J.Fractal Theory Applied to Chemical Industry [M]. Beijing: Chemical Industry Press, 2006: 13
[13] (刘代俊. 分形理论在化学工程中的应用 [M]. 北京: 化学工业出版社, 2006: 13)
[14] Xie H P, Chen Z D.The method of fractal geometry for quantitative analysis of fracture surface[J]. Eng. Mech., 1989, 6(4): 1
[14] (谢和平, 陈至达. 断口定量分析的分形几何方法[J]. 工程力学, 1989, 6(4): 1)
[15] Zhou Y H, Hu Z L, Jie W Q.Solidifying Technology [M]. Beijing: Mechanical Industry Press, 1998: 188
[15] (周尧和, 胡壮麟, 介万奇. 凝固技术[M]. 北京: 机械工业出版社, 1998: 188)
[16] Sun L L, Dong L K, Zhang J S, et al.Fractal analysis of directional solidification behaviour of Ni-base superalloy[J]. Acta Metall. Sin., 1993, 29: A115
[16] (孙力玲, 董连科, 张济山等. 高温合金定向凝固行为的分形分析[J]. 金属学报, 1993, 29: A115)
[17] Liu J M, Zhou Y H, Shang B L.On fractal of silicon-branching clusters for Al-Si eutectic growth[J]. Mater. Sci. Progr., 1990, 4: 398
[17] (刘俊明, 周尧和, 商宝禄. Al-Si共晶生长过程中Si相分枝的分维特征[J]. 材料科学进展, 1990, 4: 398)
[18] Sun L L, Dong L K, Zhang J H, et al.Fractal analyses of MC in a directionally solidified nickel-base superalloy[J]. Acta Metall. Sin., 1993, 29: A388
[18] (孙力玲, 董连科, 张静华等. 镍基高温合金定向凝固过程中MC型碳化物的分形分析[J]. 金属学报, 1993, 29: A388)
[19] Liu Z, Xu L N, Yu Z F, et al.Research on the morphology and fractal dimension of primary phase in semisolid A356-La aluminum alloy by electro-magnetic stirring[J]. Acta Metall. Sin., 2016, 52: 689
[19] (刘政, 徐丽娜, 余昭福等. 电磁场作用下半固态A356-La铝合金初生相形貌及分形维数的研究[J]. 金属学报, 2016, 52: 689)
[20] Yamamoto M, Narita I, Miyahara H.Fractal analysis of solidification microstructure of high carbon high alloy cast roll manufactured by centrifugal casting[J]. Tetsu Hagané, 2013, 99: 72
[20] (山本昌宏,成田一人,宮原広郁. 遠心鋳造した高炭素高合金鋳鉄ロールの 凝固組織のフラクタル解析[J]. 鉄と鋼,2013, 99: 72)
[21] Satou F, Esaka H, Shinozuka K.Effect of size and morphology of equiaxed grains on macroscopic segregation[J]. Tetsu Hagané, 2013, 99: 108
[21] (佐藤文人,江阪久雄,篠塚計. マクロ偏析生成に及ぼす凝固組織サイズおよび形態の影響[J]. 鉄と鋼,2013, 99: 108)
[22] Sugawara R, Itoh T, Natsume Y, et al.Prediction of dendrite morphology in Fe-base-ternary alloys and evaluation of permeability[J]. Tetsu Hagané, 2013, 99: 126
[22] (菅原諒介,伊藤利久,棗千修,大笹憲一. 鉄基三元系合金のデンドライト形態予測および透過率の評価[J]. 鉄と鋼,2013, 99: 126)
[23] Ishida H, Natsume Y, Ohsasa K.Characterization of dendrite morphology for evaluating interdendritic fluidity based on phase-field simulation[J]. ISIJ Int., 2009, 49: 37
[24] Mullins W W, Sekerka R F.Stability of a planar interface during solidification of a dilute binary alloy[J]. J. Appl. Phys., 1964, 35: 444
[25] Trivedi R, Kurz W.Dendritic growth[J]. Int. Mater. Rev., 1994, 39: 49
[26] Li T, Chen G, Lin X, et al.Morphological evolution of solidification microstructure of binary alloy under stirring[J]. Acta Metall. Sin., 2006, 42: 577
[26] (李涛, 陈光, 林鑫等. 搅拌条件下二元合金凝固组织的形态演化[J]. 金属学报, 2006, 42: 577)
[1] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[2] 刘继浩, 周健, 武会宾, 马党参, 徐辉霞, 马志俊. 喷射成形M3高速钢偏析成因及凝固机理[J]. 金属学报, 2023, 59(5): 599-610.
[3] 杨杜, 白琴, 胡悦, 张勇, 李志军, 蒋力, 夏爽, 周邦新. GH3535合金中晶界特征对碲致脆性开裂影响的分形分析[J]. 金属学报, 2023, 59(2): 248-256.
[4] 张利民, 李宁, 朱龙飞, 殷鹏飞, 王建元, 吴宏景. 交流电脉冲对过共晶Al-Si合金中初生Si相偏析的作用机制[J]. 金属学报, 2023, 59(12): 1624-1632.
[5] 陈学双, 黄兴民, 刘俊杰, 吕超, 张娟. 一种含富锰偏析带的热轧临界退火中锰钢的组织调控及强化机制[J]. 金属学报, 2023, 59(11): 1448-1456.
[6] 郭东伟, 郭坤辉, 张福利, 张飞, 曹江海, 侯自兵. 基于二次枝晶间距变化特征的连铸方坯CET位置判断新方法[J]. 金属学报, 2022, 58(6): 827-836.
[7] 李亚敏, 张瑶瑶, 赵旺, 周生睿, 刘洪军. CuInconel 718合金Nb偏析影响机理的第一性原理研究[J]. 金属学报, 2022, 58(2): 241-249.
[8] 冯苗苗, 张红伟, 邵景霞, 李铁, 雷洪, 王强. 耦合热力学相变路径预测Fe-C包晶合金宏观偏析[J]. 金属学报, 2021, 57(8): 1057-1072.
[9] 曹江海, 侯自兵, 郭中傲, 郭东伟, 唐萍. 过热度对轴承钢凝固组织整体形貌特征及渗透率的影响[J]. 金属学报, 2021, 57(5): 586-594.
[10] 郭中傲, 彭治强, 柳前, 侯自兵. 高碳钢连铸坯大区域C元素分布不均匀度[J]. 金属学报, 2021, 57(12): 1595-1606.
[11] 张壮, 李海洋, 周蕾, 刘华松, 唐海燕, 张家泉. 齿轮钢铸态点状偏析及其在热轧棒材中的演变[J]. 金属学报, 2021, 57(10): 1281-1290.
[12] 张勇, 李鑫旭, 韦康, 韦建环, 王涛, 贾崇林, 李钊, 马宗青. 三联熔炼GH4169合金大规格铸锭与棒材元素偏析行为[J]. 金属学报, 2020, 56(8): 1123-1132.
[13] 李师居, 李洋, 陈建强, 李中豪, 许光明, 李勇, 王昭东, 王国栋. 电磁振荡场作用下双辊铸轧制备2099Al-Li合金的偏析行为及组织性能[J]. 金属学报, 2020, 56(6): 831-839.
[14] 李根, 兰鹏, 张家泉. 基于Ce变质处理的TWIP钢凝固组织细化[J]. 金属学报, 2020, 56(5): 704-714.
[15] 刘杨,王磊,宋秀,梁涛沙. DD407/IN718高温合金异质焊接接头的组织及高温变形行为[J]. 金属学报, 2019, 55(9): 1221-1230.