Please wait a minute...
金属学报  2017, Vol. 53 Issue (7): 842-850    DOI: 10.11900/0412.1961.2016.00421
  本期目录 | 过刊浏览 |
焊前混合表面纳米化对2A14铝合金搅拌摩擦焊接头微观组织和力学性能的影响
杨建海1,张玉祥1(),葛利玲2,程晓3,陈家照1,高杨1
1 火箭军工程大学 西安 710025
2 西安理工大学材料科学与工程学院 西安 710048
3 中国航天科技集团长征机械厂 成都 610100
Effect of Hybrid Surface Nanocrystallization Before Welding on Microstructure and Mechanical Properties of Friction Stir Welded 2A14 Aluminum Alloy Joints
Jianhai YANG1,Yuxiang ZHANG1(),Liling GE2,Xiao CHENG3,Jiazhao CHEN1,Yang GAO1
1 Rocket Force University of Engineering, Xi'an 710025, China
2 School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
3 Chang Zheng Machinery Factory, China Aerospace Science and Technology Corporation, Chengdu 610100, China
全文: PDF(1423 KB)   HTML
  
摘要: 

采用超音速微粒轰击(SFPB)和表面机械滚压处理(SMRT)相结合的混合表面纳米化(HSNC)方法在2A14铝合金表面制备出梯度纳米结构(GNS)表层,之后进行了搅拌摩擦焊(FSW)。利用OM、SEM和TEM对比研究了HSNC样品和原始样品FSW焊缝的微观组织和断裂形貌。结果表明,GNS表层以类似“S”线复杂形式分布在HSNC样品的热机影响区(TMAZ)和焊核区(NZ)中,形成了纳米层区(NLZ);原始样品显微硬度最低处和断裂位置均发生在前进侧的TMAZ,HSNC样品显微硬度最低处和断裂位置均发生在NZ;HSNC样品的抗拉强度比原始样品提高了6.4%,延伸率比原始样品提高了14.1%,两者的断裂方式均为韧性断裂,但原始样品断口形貌为非等轴韧窝和撕裂韧窝,HSNC样品断口形貌为等轴韧窝。分析表明,由于纳米晶的优异性能,NLZ在提高焊缝强度的同时提高了塑性变形能力。

关键词 铝合金混合表面纳米化搅拌摩擦焊显微组织力学性能    
Abstract

2A14 aluminum alloy is the important raw materials of aerospace, which belongs to the heat treatment aluminum alloy. Friction stir welding (FSW) can weld aluminum alloy with high quality, and can avoid the pores and cracks of fusion welding effectively. In order to obtain better mechanical properties of FSW joints, the surface nanocrystallization method is introduced into FSW technology. By means of the hybrid surface nanocrystallization (HSNC) method of both supersonic fine particles bombarding (SFPB) and surface mechanical rolling treatment (SMRT), a smooth gradient nanostructured (GNS) layer was formed on the surface of 2A14 aluminum alloy before FSW. The FSW joints microstructure and fracture morphology of the original and HSNC specimens were researched by OM, SEM and TEM. The results showed that nanostructure layer zone (NLZ) was formed when GNS with shape similar to the "S" line was distributed in the thermal-mechanical affected zone (TMAZ) and the nugget zone (NZ) of the HSNC specimen. The lowest micro-hardness and fracture position of the original specimen occurred on the TMAZ of advancing side (AS). The lowest micro-hardness and fracture position of the HSNC specimen occurred on the NZ. The tensile strength of HSNC specimen was 6.4% higher than the original sample. The elongation of HSNC specimen was 14.1% more than the original specimen. The fracture mode of both specimens was toughness fracture. The fracture morphology of the HSNC was isometric dimple when the fracture morphology of original specimen were non-isometric dimple and avulsion dimple. Analysis showed that the NLZ of the FSW joints was beneficial to improving the strength and the plastic deformation capability simultaneously.

Key wordsaluminum alloy    hybrid surface nanocrystallization    friction stir welding    microstructure    mechanical property
收稿日期: 2016-09-21      出版日期: 2017-04-19
基金资助:国家自然科学基金项目No.51275517、陕西省科技计划项目No.2009K06-22和西安理工大学特色研究项目No.2014TS002

引用本文:

杨建海,张玉祥,葛利玲,程晓,陈家照,高杨. 焊前混合表面纳米化对2A14铝合金搅拌摩擦焊接头微观组织和力学性能的影响[J]. 金属学报, 2017, 53(7): 842-850.
Jianhai YANG,Yuxiang ZHANG,Liling GE,Xiao CHENG,Jiazhao CHEN,Yang GAO. Effect of Hybrid Surface Nanocrystallization Before Welding on Microstructure and Mechanical Properties of Friction Stir Welded 2A14 Aluminum Alloy Joints. Acta Metall, 2017, 53(7): 842-850.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2016.00421      或      http://www.ams.org.cn/CN/Y2017/V53/I7/842

图1  表面机械滚压处理装置示意图[19]
图2  搅拌摩擦焊(FSW)搅拌头照片
图3  原始和混合表面纳米化(HSNC)处理的FSW接头横截面的OM像
图4  2A14铝合金母材显微组织的OM像
图5  原始样品和HSNC样品的OM像
图6  原始样品和HSNC样品的TEM像
图7  2A14铝合金FSW接头显微硬度分布
图8  原始样品和HSNC样品FSW接头断裂位置图
Sample Yield strength / MPa Ultimate strength / MPa Elongation / % Fracture position
Base metal 315 429 15.0
Original 210 362 7.8 TMAZ (AS)
HSNC 220 385 8.9 NZ
表1  原始样品与HSNC样品FSW接头的拉伸力学性能和断裂位置
图9  原始样品和HSNC样品的FSW接头断口的SEM像
[1] Wang Y R, Teng W H, Yu Y, et al.Microstructure and characteristics of joint of electron beam welds of 2A14 aluminum alloy[J]. Chin. J. Nonferrous Met., 2012, 22: 3307
[1] (王亚荣, 滕文华, 余洋等. 电子束焊接2A14铝合金接头的组织与特征[J]. 中国有色金属学报, 2012, 22: 3307)
[2] Thomas W M, Nicholas E D, Needham J C, et al. Friction stir welding [P]. Great Britain Pat, 9125978.8, 1991
[3] Thomas W M, Nicholas E D, Needham J C, et al. Improvements relating to friction stir welding [P]. US Pat, 5460317, 1991
[4] Luan G H, North T H, Guo D L, et al.Characterizations of friction stir welding on aluminum alloy[J]. Trans. China Weld. Inst., 2002, 23(6): 62
[4] (栾国红, North T H, 郭德伦 等. 铝合金搅拌摩擦焊接头行为分析[J]. 焊接学报, 2002, 23(6): 62)
[5] Lu K, Lu J.Surface nanocrystallization (SNC) of metallic materials——Presentation of the concept behind a new approach[J]. J. Mater. Sci. Technol., 1999, 15: 193
[6] Lu L, Sui M L, Lu K.Superplastic extensibility of nanocrystalline copper at room temperature[J]. Science, 2000, 287: 1463
[7] Lu K, Lu J. Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment [J]. Mater. Sci. Eng., 2004, A375-377: 38
[8] Yang J H, Zhang Y X, Ge L L, et al.Effect of hybrid surface nanocrystallization on the electrochemical corrosion behavior in 2A14 aluminum alloy[J]. Acta Metall. Sin., 2016, 52: 1413
[8] (杨建海, 张玉祥, 葛利玲等. 2A14铝合金混合表面纳米化对电化学腐蚀行为的影响[J]. 金属学报, 2016, 52: 1413)
[9] Ge L L, Lu Z X, Jing X T, et al.Effect of surface nanocrystallization and thermal stability of 0Cr18Ni9 stainless steel on low temperature nitriding behavior[J]. Acta Metall. Sin., 2009, 45: 566
[9] (葛利玲, 卢正欣, 井晓天等. 0Cr18Ni9不锈钢表面纳米化组织及其热稳定性对低温渗氮行为的影响[J]. 金属学报, 2009, 45: 566)
[10] Xu W F, Liu J H, Luan G H, et al.Microstructures and mechanical properties of friction stir welded aluminium alloy thick plate[J]. Acta Metall. Sin., 2008, 44: 1404
[10] (徐韦锋, 刘金合, 栾国红等. 厚板铝合金搅拌摩擦焊接头显微组织与力学性能[J]. 金属学报, 2008, 44: 1404)
[11] Zhang H J, Wang M, Zhang X, et al.Characteristics and joint microstructure-property analysis of bobbin tool friction stir welding of 2A14-T6 aluminum alloy[J]. Trans. China Weld. Inst., 2015, 36(12): 65
[11] (张会杰, 王敏, 张骁等. 2A14-T6铝合金双轴肩搅拌摩擦焊特征及接头组织性能分析[J]. 焊接学报, 2015, 36(12): 65)
[12] Malarvizhi S, Balasubramanian V.Fatigue crack growth resistance of gas tungsten arc, electron beam and friction stir welded joints of AA2219 aluminium alloy[J]. Mater. Des., 2011, 32: 1205
[13] Liu H J, Zhang H J, Huang Y X, et al.Mechanical properties of underwater friction stir welded 2219 aluminum alloy[J]. Trans. Nonferrous Met. Soc. China, 2010, 20: 1387
[14] Zhang H J, Liu H J, Yu L.Microstructure and mechanical properties as a function of rotation speed in underwater friction stir welded aluminum alloy joints[J]. Mater. Des., 2011, 32: 4402
[15] Zhang H J, Liu H J, Yu L.Microstructural evolution and its effect on mechanical performance of joint in underwater friction stir welded 2219-T6 aluminium alloy[J]. Sci. Technol. Weld. Joining, 2011, 16: 459
[16] Zhang H J, Liu H J.Mathematical model and optimization for underwater friction stir welding of a heat-treatable aluminum alloy[J]. Mater. Des., 2013, 45: 206
[17] Kang J, Li J C, Feng Z C, et al.Investigation on mechanical and stress corrosion cracking properties of weakness zone in friction stir welded 2219-T8 Al alloy[J]. Acta Metall. Sin., 2016, 52: 60
[17] (康举, 李吉超, 冯志操等. 2219-T8铝合金搅拌摩擦焊接头力学和应力腐蚀性能薄弱区研究[J]. 金属学报, 2016, 52: 60)
[18] Wang D, Wang Q Z, Xiao B L, et al.Effect of heat treatment before welding on microstructure and mechanical properties of friction stir welded SiCp/Al-Cu-Mg composite joints[J]. Acta Metall. Sin., 2014, 50: 489
[18] (王东, 王全兆, 肖伯律等. 焊前热处理状态对SiCp/Al-Cu-Mg复合材料搅拌摩擦焊接头微观组织和力学性能的影响[J]. 金属学报, 2014, 50: 489)
[19] Bai T.Research on the stress corrosion cracking susceptibility of the stainless steel with surface nanocrystallization by small punch test [D]. Shanghai: East China University of Science and Technology, 2013
[19] (白涛. 不锈钢表面纳米化对应力腐蚀敏感性影响的小冲杆试验研究 [D]. 上海: 华东理工大学, 2013)
[20] Ji S D, Wen Q, Ma L, et al.Microstructure along thickness direction of friction stir welded TC4 titanium alloy joint[J]. Acta Metall. Sin., 2015, 51: 1391
[20] (姬书得, 温泉, 马琳等. TC4钛合金搅拌摩擦焊厚度方向的显微组织[J]. 金属学报, 2015, 51: 1391)
[21] Huang H W, Wang Z B, Liu L, et al.Formation of a gradient nanostructured surface layer on a martensitic stainless steel and its effects on the electrochemical corrosion behavior[J]. Acta Metall. Sin., 2015, 51: 513
[21] (黄海威, 王镇波, 刘莉等. 马氏体不锈钢上梯度纳米结构表层的形成及其对电化学腐蚀行为的影响[J]. 金属学报, 2015, 51: 513)
[22] Roland T, Retraint D, Lu K, et al. Enhanced mechanical behavior of a nanocrystallised stainless steel and its thermal stability [J]. Mater. Sci. Eng., 2007, A445-446: 281
[23] Liu J, Yang J H, Han F W, et al.Microstructures and properties of thickness aluminium alloy eleocellarium repairing welding joint by friction stir welding[J]. J. Mater. Eng., 2012, (7): 29
[23] (刘杰, 杨景宏, 韩凤武等. 厚板铝合金搅拌摩擦焊匙孔补焊接头组织与性能[J]. 材料工程, 2012, (7): 29)
[24] Nabarro F R N, Mura T. Dislocations in solids: Dislocations in metallurgy (Vol.4)[J]. J. Appl. Mech., 1981, 48: 451
[25] Shi H F, Ren X.Mechanical Properties of Materials [M]. Beijing: Peking University Press, 2010: 35
[25] (时海芳, 任鑫. 材料力学性能 [M]. 北京: 北京大学出版社, 2010: 35)
[1] 梅益, 孙全龙, 喻丽华, 王传荣, 肖华强. 基于GA-ELM的铝合金压铸件晶粒尺寸预测[J]. 金属学报, 2017, 53(9): 1125-1132.
[2] 李天瑞, 刘国怀, 徐莽, 牛红志, 付天亮, 王昭东, 王国栋. Ti-43Al-4Nb-1.5Mo合金包套锻造与热处理过程的微观组织及高温拉伸性能[J]. 金属学报, 2017, 53(9): 1055-1064.
[3] 陈瑞, 许庆彦, 郭会廷, 夏志远, 吴勤芳, 柳百成. Al-7Si-Mg铝合金拉伸过程应变硬化行为及力学性能模拟研究[J]. 金属学报, 2017, 53(9): 1110-1124.
[4] 侯陇刚, 刘明荔, 王新东, 庄林忠, 张济山. 高强7050铝合金超低温大变形加工与组织、性能调控[J]. 金属学报, 2017, 53(9): 1075-1090.
[5] 刘国怀, 李天瑞, 徐莽, 付天亮, 李勇, 王昭东, 王国栋. 累积叠轧TC4钛合金的组织演化与力学性能[J]. 金属学报, 2017, 53(9): 1038-1046.
[6] 林艳丽, 何祝斌, 初冠南, 闫永达. 利用管状试样测试各向异性材料双向应力状态力学性能的新方法[J]. 金属学报, 2017, 53(9): 1101-1109.
[7] 席明哲, 吕超, 吴贞号, 尚俊英, 周玮, 董荣梅, 高士友. 连续点式锻压激光快速成形TC11钛合金的组织和力学性能[J]. 金属学报, 2017, 53(9): 1065-1074.
[8] 陈军洲, 吕良星, 甄良, 戴圣龙. AA 7055铝合金时效析出过程的小角度X射线散射定量表征[J]. 金属学报, 2017, 53(8): 897-906.
[9] 陈波, 郝宪朝, 马颖澈, 查向东, 刘奎. 添加N对Inconel 690合金显微组织和晶界微区成分的影响[J]. 金属学报, 2017, 53(8): 983-990.
[10] 张文奇, 朱海红, 胡志恒, 曾晓雁. AlSi10Mg的激光选区熔化成形研究[J]. 金属学报, 2017, 53(8): 918-926.
[11] 李细锋, 陈楠楠, 李佼佼, 何雪婷, 刘红兵, 郑兴伟, 陈军. 温度与应变速率对Invar 36合金变形行为的影响[J]. 金属学报, 2017, 53(8): 968-974.
[12] 郭廷彪, 李琦, 王晨, 张锋, 贾智. 单晶Cu等通道转角挤压A路径形变特征及力学性能[J]. 金属学报, 2017, 53(8): 991-1000.
[13] 刘晓云,王文广,王东,肖伯律,倪丁瑞,陈礼清,马宗义. 片层石墨尺寸对片层石墨/Al复合材料的强度和热导率的影响[J]. 金属学报, 2017, 53(7): 869-878.
[14] 舒志强,袁鹏斌,欧阳志英,龚丹梅,白雪明. 回火温度对26CrMo钻杆钢显微组织和力学性能的影响[J]. 金属学报, 2017, 53(6): 669-676.
[15] 张洪伟,秦学智,李小武,周兰章. 一种高硼定向凝固合金的初熔行为及其对力学性能的影响[J]. 金属学报, 2017, 53(6): 684-694.