Please wait a minute...
金属学报  2017, Vol. 53 Issue (6): 641-647    DOI: 10.11900/0412.1961.2016.00415
  本期目录 | 过刊浏览 |
冷却速率对急冷Fe-Al-Nb三元合金凝固组织形成的影响
谷倩倩,阮莹(),朱海哲,闫娜
西北工业大学应用物理系 西安 710072
Influence of Cooling Rate on Microstructural Formation of Melt-Spun Fe-Al-Nb Ternary Alloy
Qianqian GU,Ying RUAN(),Haizhe ZHU,Na YAN
Department of Applied Physics, Northwestern Polytechnical University, Xi'an 710072, China
全文: PDF(4838 KB)   HTML
  
摘要: 

采用单辊急冷技术研究了Fe67.5Al22.8Nb9.7三元合金的快速凝固和组织形成规律。

当辊速从10 m/s增大到40 m/s时,合金条带厚度减少1个数量级,冷速增加了7倍;辊速为40 m/s时样品形状除规则条带外还出现了鱼骨状条带和球状液滴。合金显微组织由Nb(Fe, Al)2α-Fe组成,随着辊速增大,凝固组织特征发生变化并且显著细化。随着辊速的增大,合金条带近自由面凝固组织则由初生α-Fe相和层片共晶向碎断层片共晶转变,近辊面凝固组织始终由不规则共晶组成。辊速达到40 m/s时,规则条带完全由不规则共晶组成;合金液滴由于获得的冷速相对较低,其凝固组织主要由初生α-Fe相和层片共晶组成,且随着液滴直径的减小初生相由树枝晶向等轴晶转变。

关键词 Fe-Al-Nb三元合金快速凝固显微组织冷却速率共晶    
Abstract

Fe-Al-Nb ternary alloys as a sort of high-temperature structure materials are paid more attention in recent years. The pseudobinary eutectic composed of Nb(Fe, Al)2 and α-Fe phases in Fe-Al-Nb alloy transformed from lamellar shape to fiber with the increase of growth rate in directional solidification. Heat treatment techniques were applied to investigate the strengthening mechanism related to microstructural formation. However, influence of cooling rate on microstructure especially pseudobinary eutectic is not clear yet. In this work, rapid solidification and the microstructural formation of Fe67.5Al22.8Nb9.7 ternary alloy were investigated by melt spinning technique to reveal the rapid solidification mechanism of the alloy. As the wheel rate increases from 10 m/s to 40 m/s, the thickness of alloy ribbon decrease by one order of magnitude, i.e. from 67.70 μm to 4.69 μm, the cooling rate increases by seven times, i.e. from 1.24×106 K/s to 9.53×106 K/s. Consequently, the sample shape transforms from regular ribbon to regular ribbon, fishbone-like ribbon and droplets. The microstructure consists of Nb(Fe, Al)2 and α-Fe phases. The rise of wheel rate leaded to the microstructural transition and refinement, as well as the refinement in terms of eutectic interlamellar spacing and grain size (i.e. grain diameter) measured using Image-Pro Plus software. On condition that the wheel rate is less than 40 m/s, the ribbon microstructural characteristics are divided into two regions, i.e. primary α-Fe phase plus lamellar pseudobinary eutectic near free surface region and anomalous pseudobinary eutectic near roller surface region. As the wheel rate increases from 10 m/s to 30 m/s, lamellar eutectic becomes fragmented and the amount of anomalous pseudobinary eutectic enlarges. Once the wheel rate is up to 40 m/s, anomalous pseudobinary eutectic is the only microstructure of the fishbone-like ribbon. Meanwhile, the alloy droplets with the diameter size ranging from 90 μm to 1500 μm were achieved at the wheel rate of 40 m/s. Owing to the relative low cooling rate, the microstructure of the alloy droplet consist of primary α-Fe phase and lamellar pseudobinary eutectic. As the droplet diameter decreases, the primary α-Fe phase transforms from dendrite to equiaxed grain and the pseudobinary lamellar eutectic is refined.

Key wordsFe-Al-Nb ternary alloy    rapid solidification    microstructure    cooling rate    eutectic
收稿日期: 2016-09-14      出版日期: 2017-03-15
基金资助:国家自然科学基金项目Nos.51327901、U1660108、51301138,航空科学基金项目No.2014ZF53069,陕西省科学技术研究发展计划工业科技攻关项目No.2016GY-247和西北工业大学基础研究基金项目No.3102015ZY077

引用本文:

谷倩倩, 阮莹, 朱海哲, 闫娜. 冷却速率对急冷Fe-Al-Nb三元合金凝固组织形成的影响[J]. 金属学报, 2017, 53(6): 641-647.
Qianqian GU, Ying RUAN, Haizhe ZHU, Na YAN. Influence of Cooling Rate on Microstructural Formation of Melt-Spun Fe-Al-Nb Ternary Alloy. Acta Metall Sin, 2017, 53(6): 641-647.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2016.00415      或      http://www.ams.org.cn/CN/Y2017/V53/I6/641

图1  Fe67.5Al22.8Nb9.7三元合金常规凝固样品的XRD谱
图2  合金条带厚度与辊速的关系
图3  不同辊速下Fe67.5Al22.8Nb9.7合金熔体温度随时间的变化和冷却曲线
图4  不同辊速下Fe67.5Al22.8Nb9.7合金条带凝固组织的SEM像
Vr / (ms-1) fd / % λ / μm
10 18 0.341
20 32 0.178
30 47 0.121
40 100
表1  不同辊速下凝固组织特征参数
图5  Vr=40 m/s时形成的Fe67.5Al22.8Nb9.7合金鱼骨状条带和颗粒
图6  Vr=40 m/s时不同尺寸Fe67.5Al22.8Nb9.7合金液滴凝固组织的SEM像
图7  Fe67.5Al22.8Nb9.7合金液滴中共晶层片间距与粒径的关系
[1] Galenko P K, Abramova E V, Jou D, et al.Solute trapping in rapid solidification of a binary dilute system: A phase-field study[J]. Phys. Rev., 2011, 84E: 041143
[2] Kim Y W.Microstructures and mechanical properties of rapidly solidified Mg-Al-Zn-MM alloys[J]. J. Mater. Sci. Technol., 2008, 24: 89
[3] Arai Y, Emi T, Fredriksson H, et al.In-situ observed dynamics of peritectic solidification and δ/γ transformation of Fe-3 to 5 At. pct Ni alloys[J]. Metall. Mater. Trans., 2005, 36A: 3065
[4] Ruan Y, Wang X J, Chang S Y.Two hardening mechanisms in high-level undercooled Al-Cu-Ge alloys[J]. Acta Mater., 2015, 91: 183
[5] Liu N, Liu F, Chen Z, et al.Liquid-phase separation in rapid solidification of undercooled Fe-Co-Cu melts[J]. J. Mater. Sci. Technol., 2012, 28: 622
[6] Wang H P, Chang J, Wei B.Measurement and calculation of surface tension for undercooled liquid nickel and its alloy[J]. J. Appl. Phys., 2009, 106: 033506
[7] Liu Z G, Chai L H, Chen Y Y, et al.Development of rapidly solidified titanium aluminide compounds[J]. Acta Metall. Sin., 2008, 44: 569
[7] (刘志光, 柴丽华, 陈玉勇等. 快速凝固TiAl化合物的研究进展[J]. 金属学报, 2008, 44: 569)
[8] Clopet C R, Cochrane R F, Mullis A M.Spasmodic growth during the rapid solidification of undercooled Ag-Cu eutectic melts[J]. Appl. Phys. Lett., 2013, 102: 031906
[9] Li H, Liang Y F, He R Q, et al.Ordered structure and mechanical properties of Fe-6.5%Si alloy fabricated by rapid quenching[J]. Acta Metall. Sin., 2013, 49: 1452
[9] (李慧, 梁永锋, 贺睿琦等. 快速凝固Fe-6.5%Si合金有序结构及力学性能研究[J]. 金属学报, 2013, 49: 1452)
[10] Huang Q S, Liu L, Wei X X, et al.Solidification behaviors of undercooled Ni-P alloys[J]. Acta Phys. Sin., 2012, 61: 166401
[10] (黄起森, 刘礼, 韦修勋等. 过冷Ni-P合金的凝固行为[J]. 物理学报, 2012, 61: 166401)
[11] Su J H, Ren F Z, Tian B H, et al.Aging strengthening in rapidly solidified Cu-Cr-Sn-Zn alloy[J]. J. Mater. Sci. Technol., 2009, 25: 230
[12] Ruan Y, Wei B B.Rapid solidification of undercooled Al-Cu-Si eutectic alloys[J]. Chin. Sci. Bull., 2008, 53: 2716
[12] (阮莹, 魏炳波. 三元Al-Cu-Si共晶合金的深过冷与快速凝固[J]. 科学通报, 2008, 53: 2716
[13] Zhang M, Zhang L L, Pang S J, et al.Research and application of rapid-solidified Mg-Zn binary ribbons in landfill leachate treatment[J]. J. Alloys Compd., 2014, 615(Suppl.1): S595
[14] Wu W, Liu J H, Jiang C B, et al.Giant magnetostriction in Tb-doped Fe83Ga17 melt-spun ribbons[J]. Appl. Phys. Lett., 2013, 103: 262403
[15] Milenkovic S, Palm M.Microstructure and mechanical properties of directionally solidified Fe-Al-Nb eutectic[J]. Intermetallics, 2008, 16: 1212
[16] Mota M A, Coelho A A, Bejarano J M Z, et al. Fe-Al-Nb phase diagram investigation and directional growth of the (Fe, Al)2Nb-(Fe, Al, Nb)ss eutectic system[J]. J. Alloys Compd., 2005, 399: 196
[17] Mota M A, Coelho A A, Bejarano J M Z, et al. Directional growth and characterization of Fe-Al-Nb eutectic alloys [J]. J. Cryst. Growth, 1999, 198-199: 850
[18] Park J M, Kim K B, Kim W T, et al.High strength ultrafine eutectic Fe-Nb-Al composites with enhanced plasticity[J]. Intermetallics, 2008, 16: 642
[19] Morris D G, Requejo L M, Mu?oz-Morris M A. Age hardening in some Fe-Al-Nb alloys[J]. Scr. Mater., 2006, 54: 393
[20] Morris D G, Mu?oz-Morris M A, Requejo L M, et al. Strengthening at high temperatures by precipitates in Fe-Al-Nb alloys[J]. Intermetallics, 2006, 14: 1204
[21] Prymak O, Stein F.Solidification and high-temperature phase equilibria in the Fe-Al-rich part of the Fe-Al-Nb system[J]. Intermeta-llics, 2010, 18: 1322
[22] Stein F, Schneider A, Frommeyer G.Flow stress anomaly and order-disorder transitions in Fe3Al-based Fe-Al-Ti-X alloys with X=V, Cr, Nb, or Mo[J]. Intermetallics, 2003, 11: 71
[23] Morris D G, Mu?oz-Morris M A, Baudin C. The high-temperature strength of some Fe3Al alloys[J]. Acta Mater., 2004, 52: 2827
[24] Yang H Q, Yao Z J, Luo X X, et al.Effect of Nb addition on structure and mechanical properties of FeAl coating[J]. Surf. Coat. Technol., 2015, 270: 221
[25] Morris D G, Mu?oz-Morris M A, Baudin C. The high-temperature strength of some Fe3Al alloys[J]. Acta Mater., 2004, 52: 2827
[26] Morris D G, Requejo L M, Mu?oz-Morris M A. A study of precipitation in DO3 ordered Fe-Al-Nb alloy[J]. Intermetallics, 2005, 13: 862
[27] Drensler S, Mardare C C, Milenkovic S, et al.Selective dissolution in AlFeNb alloys[J]. Phys. Status Solidi, 2012, 209A: 854
[28] Stein F, He C, Prymak O, et al.Phase equilibria in the Fe-Al-Nb system: Solidification behaviour, liquidus surface and isothermal sections[J]. Intermetallics, 2015, 59: 43
[29] Ruan Y, Gu Q Q, Lü P, et al.Rapid eutectic growth and applied performances of Fe-Al-Nb alloy solidified under electromagnetic levitation condition[J]. Mater. Des., 2016, 112: 239
[30] Xu J F, Wei B B.Liquid phase flow and microstructure formation during rapid solidification[J]. Acta Phys. Sin., 2004, 53: 1909
[30] (徐锦锋, 魏炳波. 急冷快速凝固过程中液相流动与组织形成的相关规律[J]. 物理学报, 2004, 53: 1909)
[31] Tkatch V I, Denisenko S N, Beloshov O N.Direct measurements of the cooling rates in the single roller rapid solidification technique[J]. Acta Mater., 1997, 45: 2821
[1] 黄森森,马英杰,张仕林,齐敏,雷家峰,宗亚平,杨锐. α+β两相钛合金元素再分配行为及其对显微组织和力学性能的影响[J]. 金属学报, 2019, 55(6): 741-750.
[2] 刘巧沐,黄顺洲,刘芳,杨艳,南宏强,张东,孙文儒. B含量对K417G合金凝固过程中组织演变和力学性能的影响[J]. 金属学报, 2019, 55(6): 720-728.
[3] 蓝春波,梁家能,劳远侠,谭登峰,黄春艳,莫羡忠,庞锦英. 冷轧态Ti-35Nb-2Zr-0.3O合金的异常热膨胀行为[J]. 金属学报, 2019, 55(6): 701-708.
[4] 刘征,刘建荣,赵子博,王磊,王清江,杨锐. 电子束快速成形制备TC4合金的组织和拉伸性能分析[J]. 金属学报, 2019, 55(6): 692-700.
[5] 安同邦,魏金山,单际国,田志凌. 保护气成分对1000 MPa级高强熔敷金属组织特征的影响[J]. 金属学报, 2019, 55(5): 575-584.
[6] 任德春, 苏虎虎, 张慧博, 王健, 金伟, 杨锐. 冷旋锻变形对TB9钛合金显微组织和拉伸性能的影响[J]. 金属学报, 2019, 55(4): 480-488.
[7] 王宝刚, 易红亮, 王国栋, 骆智超, 黄明欣. 原位生成铁基复合材料中TiB2的三维形貌重构[J]. 金属学报, 2019, 55(1): 133-140.
[8] 贺志荣, 吴佩泽, 刘康凯, 冯辉, 杜雨青, 冀荣耀. 激冷Ti-47Ni合金薄带的组织、相变和形状记忆行为[J]. 金属学报, 2018, 54(8): 1157-1164.
[9] 徐士新, 余伟, 李舒笳, 王坤, 孙齐松. 预变形温度对纳米贝氏体相变动力学及组织的影响[J]. 金属学报, 2018, 54(8): 1113-1121.
[10] 王光东, 田妮, 何长树, 赵刚, 左良. DC铸造Al-12Si-0.65Mg-xMn合金中第二相的形成[J]. 金属学报, 2018, 54(7): 1059-1067.
[11] 张建锋, 蓝青, 乐启炽. 交流磁场致Al-Fe亚共晶合金熔体热电势变化的研究[J]. 金属学报, 2018, 54(7): 1042-1050.
[12] 高飘, 魏恺文, 喻寒琛, 杨晶晶, 王泽敏, 曾晓雁. 分层厚度对选区激光熔化成形Ti-5Al-2.5Sn合金组织与性能的影响规律[J]. 金属学报, 2018, 54(7): 999-1009.
[13] 刘廷光, 夏爽, 白琴, 周邦新. 316L不锈钢的三维晶粒与晶界形貌特征及尺寸分布[J]. 金属学报, 2018, 54(6): 868-876.
[14] 翟斌, 周凯, 吕鹏, 王海鹏. 自由落体条件下Ti-6Al-4V合金微液滴的快速凝固研究[J]. 金属学报, 2018, 54(5): 824-830.
[15] 朱鸣芳, 邢丽科, 方辉, 张庆宇, 汤倩玉, 潘诗琰. 合金凝固枝晶粗化的研究进展[J]. 金属学报, 2018, 54(5): 789-800.