Please wait a minute...
金属学报  2017, Vol. 53 Issue (6): 669-676    DOI: 10.11900/0412.1961.2016.00406
  本期目录 | 过刊浏览 |
回火温度对26CrMo钻杆钢显微组织和力学性能的影响
舒志强1(),袁鹏斌2,欧阳志英1,龚丹梅1,白雪明1
1 上海海隆石油管材研究所 上海 200949
2 海隆石油工业集团有限公司 上海 200949
Effects of Tempering Temperature on Microstructure and Mechanical Properties of Drill Pipe Steel 26CrMo
Zhiqiang SHU1(),Pengbin YUAN2,Zhiying OUYANG1,Danmei GONG1,Xueming BAI1
1 Shanghai Hailong Oil Tubular Goods Research Institute, Shanghai 200949, China
2 Hilong Group of Companies Ltd., Shanghai 200949, China
全文: PDF(6909 KB)   HTML
  
摘要: 

采用力学性能测试、组织观察等方法研究回火温度对26CrMo钢显微组织和力学性能的影响。结果表明,26CrMo钢经540~690 ℃回火,随回火温度升高,显微组织中α相基体逐渐发生回复与再结晶,组织中马氏体形态逐渐消失,碳化物先在马氏体板条边界呈片状或棒状析出,逐渐演变为颗粒状弥散分布,690 ℃时碳化物在晶界聚集长大、球化。随回火温度升高,26CrMo钢强度逐渐降低,塑性、韧性逐渐增大;不同回火条件下,抗拉强度、屈服强度、延伸率和冲击功满足API 5DP标准中各级别钻杆要求。随回火温度升高,26CrMo钢总冲击功、起裂功和裂纹扩展功均逐渐增大,裂纹扩展功是起裂功的3倍以上,且两者比值变化不明显,表现出良好的抗裂纹扩展能力。不同回火温度下冲击性能的变化与其强度、塑性变化密切相关,冲击韧性好坏主要由塑性大小决定。

关键词 26CrMo钻杆钢回火温度显微组织强塑性冲击韧性    
Abstract

The effects of tempering temperature on microstructure and mechanical properties of steel 26CrMo were studied based on mechanical property tests and microstructure observation. The results show that a phase matrix gradually occurs recovery and recrystallization with increasing temperature during 540~690 ℃ temper process, martensite morphology fades away gradually, flake or rocklike carbides separate out along the martensite boundaries, and then change into granulated dispersed distribution, at 690 ℃ tempering carbides happen aggregation and growth on grain boundaries. With tempering temperature increasing, the strength of 26CrMo steel is gradually reducing, plasticity and toughness are gradually increasing. The tensile property and impact energy can meet all different grade drill pipe requirements in API 5DP standard with different tempering conditions. The total impact energy, crack initiation energy and crack propagation energy of 26CrMo steel are gradually increasing with the tempering temperature rising, the crack propagation energy is three times of crack initiation energy which shows great anti-crack propagation capability, but their ratio has no obvious change. The change of impact pro-perty is closely related to the strength and plasticity change, impact toughness stand or fall depends on high or low plasticity.

Key wordsdrill pipe steel 26CrMo    tempering temperature    microstructure    strength and plasticity properties    impact toughness
收稿日期: 2016-09-09      出版日期: 2017-03-29
基金资助:上海市宝山区科技创新专项资金项目 No.13-B-3

引用本文:

舒志强,袁鹏斌,欧阳志英,龚丹梅,白雪明. 回火温度对26CrMo钻杆钢显微组织和力学性能的影响[J]. 金属学报, 2017, 53(6): 669-676.
Zhiqiang SHU,Pengbin YUAN,Zhiying OUYANG,Danmei GONG,Xueming BAI. Effects of Tempering Temperature on Microstructure and Mechanical Properties of Drill Pipe Steel 26CrMo. Acta Metall Sin, 2017, 53(6): 669-676.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2016.00406      或      http://www.ams.org.cn/CN/Y2017/V53/I6/669

图1  26CrMo钢淬火组织的OM像
图2  26CrMo钢540 ℃回火组织的OM像
图3  回火温度对26CrMo钢强度和延伸率的影响
图4  回火温度对26CrMo钢硬化指数、均匀形变容量的影响
图5  回火温度对26CrMo钢屈强比的影响
图6  不同温度回火26CrMo钢室温示波冲击载荷-挠度曲线
图7  回火温度对26CrMo钢总冲击功、起裂功、裂纹扩展功的影响
图8  不同回火温度下26CrMo钢室温冲击断口宏观和微观形貌的SEM像
图9  不同回火温度下26CrMo钢显微组织的SEM像
图10  回火温度对26CrMo钢抗拉强度和最大冲击力的影响
图11  回火温度对26CrMo钢硬化指数和最大冲击力位移的影响
[1] Liu X S.Drilling Technology Principle [M]. Beijing: Petroleum Industry Press, 1988: 95
[1] (刘希圣. 钻井工艺原理 [M]. 北京: 石油工业出版社, 1988: 95)
[2] Long Z H, Zhang J H.Drilling Engineering [M]. Beijing: China Petrochemical Press, 2010: 64
[2] (龙芝辉, 张锦宏. 钻井工程[M]. 北京: 中国石化出版社, 2010: 64)
[3] Gao L X, Zhang Y.String Design and Oil Tubular Goods Selection [M]. Beijing: Petroleum Industry Press, 2013: 97
[3] (高连新, 张毅. 管柱设计与油井管选材 [M]. 北京: 石油工业出版社, 2013: 97)
[4] Zhang Y, Zhao R C, Zhang R X.Comment on technical quality of high-strength drill pipes made at home and abroad[J]. Steel Pipe, 2000, 29(5): 1
[4] (张毅, 赵仁存, 张汝忻. 国内外高强度钻杆的技术质量评述 [J]. 钢管, 2000, 29(5): 1)
[5] Li J Q, Yu L S, Niu C J, et al.The production status and development trend of drill pipe[J]. Welded Pipe Tube, 2011, 34(11): 35
[5] (李建强, 于丽松, 牛成杰等. 石油钻杆的生产现状与发展趋势[J]. 焊管, 2011, 34(11): 35)
[6] Wang X H, Zhang G J, Li F P, et al.Chemical composition, heat treatment and mechanical properties of drill pipe steel[J]. Petrol. Tub. Goods Instrum., 2015, 1(2): 33
[6] (王新虎, 张冠军, 李方坡等. 钻杆钢的成分、热处理工艺及其力学性能[J]. 石油管材与仪器, 2015, 1(2): 33)
[7] Qian Q, Cao G Z, Liu C, et al.Influence by tempering temperature on performance of 26CrMo4s/2 drill pipe blank[J]. Steel Pipe, 2012, 41(5): 36
[7] (钱强, 曹贵贞, 刘聪等. 回火温度对26CrMo4s/2钢钻杆用管性能的影响[J]. 钢管, 2012, 41(5): 36)
[8] Cao J J, Chen M A.Research on heat treatment technology of 26CrMoNbTiB (S135) drill pipe[J]. Met. Mater. Metall. Eng., 2007, 35(2): 28
[8] (曹建军, 陈明安. 26CrMoNbTiB (S135)钻杆管热处理工艺的研究[J]. 金属材料与冶金工程, 2007, 35(2): 28)
[9] Zhang Z P, Zhang J S, Ning B Q.Effects of tempering temperature on microstructure and mechanical properties of 28CrMo47V steel[J]. Hot Work. Technol., 2012, 41(18): 184
[9] (张哲平, 张佳森, 宁保群. 回火温度对28CrMo47V钢组织和性能的影响[J]. 热加工工艺, 2012, 41(18): 184)
[10] He S L, Cai H P, Han L H.Study on heat treatment process improving strength and toughness of S135 drill pipe[J]. Steel Pipe, 2011, 40(suppl.): 7
[10] (何石磊, 蔡和平, 韩礼红. 提高S135钻杆强韧性的热处理工艺研究[J]. 钢管, 2011, 40(增刊): 7)
[11] Shaeri M H, Saghafian H, Shabestari S G.Effects of austempering and martempering processes on amount of retained austenite in Cr-Mo steels (FMU-226) used in mill liner[J]. J. Iron Steel Res. Int., 2010, 17: 53
[12] Huang B S, Jiang Z Y, Pan H H, et al.Influence of different heat treatment on corrosion resistance of G105 pipe[J]. J. Chin. Soc. Corros. Protect., 2012, 32: 67
[12] (黄本生, 江仲英, 潘欢欢等. 热处理工艺对G105钻杆材料抗腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2012, 32: 67)
[13] Ouyang Z Y, Shu Z Q, Yuan P B.Effect of yield ratio on the performance of high strength and high ductility drill pipe[J]. Phys. Test. Chem. Anal.(Phys. Test.), 2013, 49A: 17
[13] (欧阳志英, 舒志强, 袁鹏斌. 屈强比对高强度高塑性钻杆性能的影响[J]. 理化检验-物理分册, 2013, 49A: 17)
[14] Li Y H, Xin X X, Fan Y G.Discussion on the yield-tensile ratio parameters of high-strength pipe line steel[J]. China Petrol. Mach., 2006, 34(9): 105
[14] (李晓红, 辛希贤, 樊玉光. 高强度管线钢屈强比参数的一些探讨[J]. 石油机械, 2006, 34(9): 105)
[15] Gao H L.Analysis and commentary on yield ratio of pipeline steel[J]. Welded Pipe Tube, 2010, 33(6): 10
[15] (高惠临. 管线钢屈强比分析与评述[J]. 焊管, 2010, 33(6): 10)
[16] Tang Z T.Relationship between fracture and force-displacement curve of impact specimen[J]. Phys. Exam. Test., 2004, (4): 1
[16] (唐振廷. 冲击试样断口与力-位移曲线之间的关系[J]. 物理测试, 2004, (4): 1)
[17] Wang H, Han L H, Hu F, et al.Effect of tempering temperature on precipitate and mechanical properties of an anti-sulfur, drill pipe steel in H2S containing environments[J]. Trans. Mater. Heat Treat., 2012, 33(3): 88
[17] (王航, 韩礼红, 胡锋等. 回火温度对抗硫钻杆钢析出相形貌及力学性能的影响[J]. 材料热处理学报, 2012, 33(3): 88)
[18] Wu X L, Niu J, Dong J M.Effect of tempering temperature on microstructure and properties of 25Cr2Ni4MoV steel[J]. Hot Work. Technol., 2008, 37(20): 76
[18] (吴新丽, 牛靖, 董俊明. 回火温度对25Cr2Ni4MoV钢组织和性能的影响[J]. 热加工工艺, 2008, 37(20): 76)
[19] Hui W J, Dong H, Weng Y Q, et al.Effect of heat treatment para-meters on mechanical properties of high strength Cr-Mo-V steel[J]. Acta Metall. Sin., 2002, 38: 1009
[19] (惠卫军, 董瀚, 翁宇庆等. 回火温度对Cr-Mo-V系高强度钢力学性能的影响[J]. 金属学报, 2002, 38: 1009)
[20] Qin B, Wang Z Y, Sun Q S.Effect of tempering temperature on properties of 00Cr16Ni5Mo stainless steel[J]. Mater. Charact., 2008, 59: 1096
[21] Wen T, Hu X F, Song Y Y, et al.Effect of tempering temperature on carbide and mechanical properties in a Fe-Cr-Ni-Mo high-strength steel[J]. Acta Metall. Sin., 2014, 50: 447
[21] (温涛, 胡小锋, 宋元元等. 回火温度对一种Fe-Cr-Ni-Mo高强钢碳化物及其力学性能的影响[J]. 金属学报, 2014, 50: 447)
[22] Cui Z Q, Qin Y C.Metallographic and Heat Treatment [M]. 2nd Ed., Beijing: China Machine Press, 2007: 196
[22] (崔忠圻, 覃耀春. 金属学与热处理 [M]. 第2版. 北京: 机械工业出版社, 2007: 196)
[23] Cui Y X, Wang C L.Metal Fracture Analysis [M]. Harbin: Harbin Industrial University Press, 1998: 73
[23] (崔约贤, 王长利. 金属断口分析 [M]. 哈尔滨: 哈尔滨工业大学出版社, 1998: 73)
[24] Chen J D, Mo W L, Wang P, et al.Effects of tempering temperature on the impact toughness of steel 42CrMo[J]. Acta Metall. Sin., 2012, 48: 1186
[24] (陈俊丹, 莫文林, 王培等. 回火温度对42CrMo钢冲击韧性的影响[J]. 金属学报, 2012, 48: 1186)
[25] Yuan S P, Liu G, Wang R H, et al.Coupling effect of multiple precipitates on the ductile fracture of aged Al-Mg-Si alloys[J]. Scr. Mater., 2007, 57: 865
[26] Zhou H J, Tu M J, Deng Z J, et al.On the development of strength potentialities of metallic materials, the second part——Rational balance between strength and ductility or toughness[J]. J. Xi′an Jiaotong Univ., 1980, 14(1): 25
[26] (周惠久, 涂铭旌, 邓增杰等. 再论发挥金属材料强度潜力问题——强度、塑性、韧度的合理配合[J]. 西安交通大学学报, 1980, 14(1): 25)
[27] Shu D L.Mechanical Properties of Materials [M]. 2nd Ed., Beijing: China Machine Press, 2007: 15
[27] (束德林. 工程材料力学性能 [M]. 第2版. 北京: 机械工业出版社, 2007: 15)
[28] Zhou H J, Huang M Z.The Strength Theory of Metal Materials [M]. Beijing: Science Press, 1989: 215
[28] (周惠久, 黄明志. 金属材料强度学 [M]. 北京: 科学出版社, 1989: 215)
[1] 黄森森,马英杰,张仕林,齐敏,雷家峰,宗亚平,杨锐. α+β两相钛合金元素再分配行为及其对显微组织和力学性能的影响[J]. 金属学报, 2019, 55(6): 741-750.
[2] 刘巧沐,黄顺洲,刘芳,杨艳,南宏强,张东,孙文儒. B含量对K417G合金凝固过程中组织演变和力学性能的影响[J]. 金属学报, 2019, 55(6): 720-728.
[3] 蓝春波,梁家能,劳远侠,谭登峰,黄春艳,莫羡忠,庞锦英. 冷轧态Ti-35Nb-2Zr-0.3O合金的异常热膨胀行为[J]. 金属学报, 2019, 55(6): 701-708.
[4] 刘征,刘建荣,赵子博,王磊,王清江,杨锐. 电子束快速成形制备TC4合金的组织和拉伸性能分析[J]. 金属学报, 2019, 55(6): 692-700.
[5] 安同邦,魏金山,单际国,田志凌. 保护气成分对1000 MPa级高强熔敷金属组织特征的影响[J]. 金属学报, 2019, 55(5): 575-584.
[6] 任德春, 苏虎虎, 张慧博, 王健, 金伟, 杨锐. 冷旋锻变形对TB9钛合金显微组织和拉伸性能的影响[J]. 金属学报, 2019, 55(4): 480-488.
[7] 贺志荣, 吴佩泽, 刘康凯, 冯辉, 杜雨青, 冀荣耀. 激冷Ti-47Ni合金薄带的组织、相变和形状记忆行为[J]. 金属学报, 2018, 54(8): 1157-1164.
[8] 徐士新, 余伟, 李舒笳, 王坤, 孙齐松. 预变形温度对纳米贝氏体相变动力学及组织的影响[J]. 金属学报, 2018, 54(8): 1113-1121.
[9] 高飘, 魏恺文, 喻寒琛, 杨晶晶, 王泽敏, 曾晓雁. 分层厚度对选区激光熔化成形Ti-5Al-2.5Sn合金组织与性能的影响规律[J]. 金属学报, 2018, 54(7): 999-1009.
[10] 刘廷光, 夏爽, 白琴, 周邦新. 316L不锈钢的三维晶粒与晶界形貌特征及尺寸分布[J]. 金属学报, 2018, 54(6): 868-876.
[11] 朱鸣芳, 邢丽科, 方辉, 张庆宇, 汤倩玉, 潘诗琰. 合金凝固枝晶粗化的研究进展[J]. 金属学报, 2018, 54(5): 789-800.
[12] 文明月, 董文超, 庞辉勇, 陆善平. 一种Fe-Cr-Ni-Mo高强钢焊接热影响区的显微组织与冲击韧性研究[J]. 金属学报, 2018, 54(4): 501-511.
[13] 秦凤明, 李亚杰, 赵晓东, 何文武, 陈慧琴. 含N量对Mn18Cr18N奥氏体不锈钢的析出行为及力学性能的影响[J]. 金属学报, 2018, 54(1): 55-64.
[14] 杜瑜宾, 胡小锋, 姜海昌, 闫德胜, 戎利建. 回火时间对Fe-Cr-Ni-Mo高强钢碳化物演变及力学性能的影响[J]. 金属学报, 2018, 54(1): 11-20.
[15] 席明哲, 吕超, 吴贞号, 尚俊英, 周玮, 董荣梅, 高士友. 连续点式锻压激光快速成形TC11钛合金的组织和力学性能[J]. 金属学报, 2017, 53(9): 1065-1074.