Please wait a minute...
金属学报  2017, Vol. 53 Issue (6): 669-676    DOI: 10.11900/0412.1961.2016.00406
  本期目录 | 过刊浏览 |
回火温度对26CrMo钻杆钢显微组织和力学性能的影响
舒志强1(),袁鹏斌2,欧阳志英1,龚丹梅1,白雪明1
1 上海海隆石油管材研究所 上海 200949
2 海隆石油工业集团有限公司 上海 200949
Effects of Tempering Temperature on Microstructure and Mechanical Properties of Drill Pipe Steel 26CrMo
Zhiqiang SHU1(),Pengbin YUAN2,Zhiying OUYANG1,Danmei GONG1,Xueming BAI1
1 Shanghai Hailong Oil Tubular Goods Research Institute, Shanghai 200949, China
2 Hilong Group of Companies Ltd., Shanghai 200949, China
引用本文:

舒志强,袁鹏斌,欧阳志英,龚丹梅,白雪明. 回火温度对26CrMo钻杆钢显微组织和力学性能的影响[J]. 金属学报, 2017, 53(6): 669-676.
Zhiqiang SHU, Pengbin YUAN, Zhiying OUYANG, Danmei GONG, Xueming BAI. Effects of Tempering Temperature on Microstructure and Mechanical Properties of Drill Pipe Steel 26CrMo[J]. Acta Metall Sin, 2017, 53(6): 669-676.

全文: PDF(6909 KB)   HTML
  
摘要: 

采用力学性能测试、组织观察等方法研究回火温度对26CrMo钢显微组织和力学性能的影响。结果表明,26CrMo钢经540~690 ℃回火,随回火温度升高,显微组织中α相基体逐渐发生回复与再结晶,组织中马氏体形态逐渐消失,碳化物先在马氏体板条边界呈片状或棒状析出,逐渐演变为颗粒状弥散分布,690 ℃时碳化物在晶界聚集长大、球化。随回火温度升高,26CrMo钢强度逐渐降低,塑性、韧性逐渐增大;不同回火条件下,抗拉强度、屈服强度、延伸率和冲击功满足API 5DP标准中各级别钻杆要求。随回火温度升高,26CrMo钢总冲击功、起裂功和裂纹扩展功均逐渐增大,裂纹扩展功是起裂功的3倍以上,且两者比值变化不明显,表现出良好的抗裂纹扩展能力。不同回火温度下冲击性能的变化与其强度、塑性变化密切相关,冲击韧性好坏主要由塑性大小决定。

关键词 26CrMo钻杆钢回火温度显微组织强塑性冲击韧性    
Abstract

The effects of tempering temperature on microstructure and mechanical properties of steel 26CrMo were studied based on mechanical property tests and microstructure observation. The results show that a phase matrix gradually occurs recovery and recrystallization with increasing temperature during 540~690 ℃ temper process, martensite morphology fades away gradually, flake or rocklike carbides separate out along the martensite boundaries, and then change into granulated dispersed distribution, at 690 ℃ tempering carbides happen aggregation and growth on grain boundaries. With tempering temperature increasing, the strength of 26CrMo steel is gradually reducing, plasticity and toughness are gradually increasing. The tensile property and impact energy can meet all different grade drill pipe requirements in API 5DP standard with different tempering conditions. The total impact energy, crack initiation energy and crack propagation energy of 26CrMo steel are gradually increasing with the tempering temperature rising, the crack propagation energy is three times of crack initiation energy which shows great anti-crack propagation capability, but their ratio has no obvious change. The change of impact pro-perty is closely related to the strength and plasticity change, impact toughness stand or fall depends on high or low plasticity.

Key wordsdrill pipe steel 26CrMo    tempering temperature    microstructure    strength and plasticity properties    impact toughness
收稿日期: 2016-09-09     
基金资助:上海市宝山区科技创新专项资金项目 No.13-B-3
图1  26CrMo钢淬火组织的OM像
图2  26CrMo钢540 ℃回火组织的OM像
图3  回火温度对26CrMo钢强度和延伸率的影响
图4  回火温度对26CrMo钢硬化指数、均匀形变容量的影响
图5  回火温度对26CrMo钢屈强比的影响
图6  不同温度回火26CrMo钢室温示波冲击载荷-挠度曲线
图7  回火温度对26CrMo钢总冲击功、起裂功、裂纹扩展功的影响
图8  不同回火温度下26CrMo钢室温冲击断口宏观和微观形貌的SEM像
图9  不同回火温度下26CrMo钢显微组织的SEM像
图10  回火温度对26CrMo钢抗拉强度和最大冲击力的影响
图11  回火温度对26CrMo钢硬化指数和最大冲击力位移的影响
[1] Liu X S.Drilling Technology Principle [M]. Beijing: Petroleum Industry Press, 1988: 95
[1] (刘希圣. 钻井工艺原理 [M]. 北京: 石油工业出版社, 1988: 95)
[2] Long Z H, Zhang J H.Drilling Engineering [M]. Beijing: China Petrochemical Press, 2010: 64
[2] (龙芝辉, 张锦宏. 钻井工程[M]. 北京: 中国石化出版社, 2010: 64)
[3] Gao L X, Zhang Y.String Design and Oil Tubular Goods Selection [M]. Beijing: Petroleum Industry Press, 2013: 97
[3] (高连新, 张毅. 管柱设计与油井管选材 [M]. 北京: 石油工业出版社, 2013: 97)
[4] Zhang Y, Zhao R C, Zhang R X.Comment on technical quality of high-strength drill pipes made at home and abroad[J]. Steel Pipe, 2000, 29(5): 1
[4] (张毅, 赵仁存, 张汝忻. 国内外高强度钻杆的技术质量评述 [J]. 钢管, 2000, 29(5): 1)
[5] Li J Q, Yu L S, Niu C J, et al.The production status and development trend of drill pipe[J]. Welded Pipe Tube, 2011, 34(11): 35
[5] (李建强, 于丽松, 牛成杰等. 石油钻杆的生产现状与发展趋势[J]. 焊管, 2011, 34(11): 35)
[6] Wang X H, Zhang G J, Li F P, et al.Chemical composition, heat treatment and mechanical properties of drill pipe steel[J]. Petrol. Tub. Goods Instrum., 2015, 1(2): 33
[6] (王新虎, 张冠军, 李方坡等. 钻杆钢的成分、热处理工艺及其力学性能[J]. 石油管材与仪器, 2015, 1(2): 33)
[7] Qian Q, Cao G Z, Liu C, et al.Influence by tempering temperature on performance of 26CrMo4s/2 drill pipe blank[J]. Steel Pipe, 2012, 41(5): 36
[7] (钱强, 曹贵贞, 刘聪等. 回火温度对26CrMo4s/2钢钻杆用管性能的影响[J]. 钢管, 2012, 41(5): 36)
[8] Cao J J, Chen M A.Research on heat treatment technology of 26CrMoNbTiB (S135) drill pipe[J]. Met. Mater. Metall. Eng., 2007, 35(2): 28
[8] (曹建军, 陈明安. 26CrMoNbTiB (S135)钻杆管热处理工艺的研究[J]. 金属材料与冶金工程, 2007, 35(2): 28)
[9] Zhang Z P, Zhang J S, Ning B Q.Effects of tempering temperature on microstructure and mechanical properties of 28CrMo47V steel[J]. Hot Work. Technol., 2012, 41(18): 184
[9] (张哲平, 张佳森, 宁保群. 回火温度对28CrMo47V钢组织和性能的影响[J]. 热加工工艺, 2012, 41(18): 184)
[10] He S L, Cai H P, Han L H.Study on heat treatment process improving strength and toughness of S135 drill pipe[J]. Steel Pipe, 2011, 40(suppl.): 7
[10] (何石磊, 蔡和平, 韩礼红. 提高S135钻杆强韧性的热处理工艺研究[J]. 钢管, 2011, 40(增刊): 7)
[11] Shaeri M H, Saghafian H, Shabestari S G.Effects of austempering and martempering processes on amount of retained austenite in Cr-Mo steels (FMU-226) used in mill liner[J]. J. Iron Steel Res. Int., 2010, 17: 53
[12] Huang B S, Jiang Z Y, Pan H H, et al.Influence of different heat treatment on corrosion resistance of G105 pipe[J]. J. Chin. Soc. Corros. Protect., 2012, 32: 67
[12] (黄本生, 江仲英, 潘欢欢等. 热处理工艺对G105钻杆材料抗腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2012, 32: 67)
[13] Ouyang Z Y, Shu Z Q, Yuan P B.Effect of yield ratio on the performance of high strength and high ductility drill pipe[J]. Phys. Test. Chem. Anal.(Phys. Test.), 2013, 49A: 17
[13] (欧阳志英, 舒志强, 袁鹏斌. 屈强比对高强度高塑性钻杆性能的影响[J]. 理化检验-物理分册, 2013, 49A: 17)
[14] Li Y H, Xin X X, Fan Y G.Discussion on the yield-tensile ratio parameters of high-strength pipe line steel[J]. China Petrol. Mach., 2006, 34(9): 105
[14] (李晓红, 辛希贤, 樊玉光. 高强度管线钢屈强比参数的一些探讨[J]. 石油机械, 2006, 34(9): 105)
[15] Gao H L.Analysis and commentary on yield ratio of pipeline steel[J]. Welded Pipe Tube, 2010, 33(6): 10
[15] (高惠临. 管线钢屈强比分析与评述[J]. 焊管, 2010, 33(6): 10)
[16] Tang Z T.Relationship between fracture and force-displacement curve of impact specimen[J]. Phys. Exam. Test., 2004, (4): 1
[16] (唐振廷. 冲击试样断口与力-位移曲线之间的关系[J]. 物理测试, 2004, (4): 1)
[17] Wang H, Han L H, Hu F, et al.Effect of tempering temperature on precipitate and mechanical properties of an anti-sulfur, drill pipe steel in H2S containing environments[J]. Trans. Mater. Heat Treat., 2012, 33(3): 88
[17] (王航, 韩礼红, 胡锋等. 回火温度对抗硫钻杆钢析出相形貌及力学性能的影响[J]. 材料热处理学报, 2012, 33(3): 88)
[18] Wu X L, Niu J, Dong J M.Effect of tempering temperature on microstructure and properties of 25Cr2Ni4MoV steel[J]. Hot Work. Technol., 2008, 37(20): 76
[18] (吴新丽, 牛靖, 董俊明. 回火温度对25Cr2Ni4MoV钢组织和性能的影响[J]. 热加工工艺, 2008, 37(20): 76)
[19] Hui W J, Dong H, Weng Y Q, et al.Effect of heat treatment para-meters on mechanical properties of high strength Cr-Mo-V steel[J]. Acta Metall. Sin., 2002, 38: 1009
[19] (惠卫军, 董瀚, 翁宇庆等. 回火温度对Cr-Mo-V系高强度钢力学性能的影响[J]. 金属学报, 2002, 38: 1009)
[20] Qin B, Wang Z Y, Sun Q S.Effect of tempering temperature on properties of 00Cr16Ni5Mo stainless steel[J]. Mater. Charact., 2008, 59: 1096
[21] Wen T, Hu X F, Song Y Y, et al.Effect of tempering temperature on carbide and mechanical properties in a Fe-Cr-Ni-Mo high-strength steel[J]. Acta Metall. Sin., 2014, 50: 447
[21] (温涛, 胡小锋, 宋元元等. 回火温度对一种Fe-Cr-Ni-Mo高强钢碳化物及其力学性能的影响[J]. 金属学报, 2014, 50: 447)
[22] Cui Z Q, Qin Y C.Metallographic and Heat Treatment [M]. 2nd Ed., Beijing: China Machine Press, 2007: 196
[22] (崔忠圻, 覃耀春. 金属学与热处理 [M]. 第2版. 北京: 机械工业出版社, 2007: 196)
[23] Cui Y X, Wang C L.Metal Fracture Analysis [M]. Harbin: Harbin Industrial University Press, 1998: 73
[23] (崔约贤, 王长利. 金属断口分析 [M]. 哈尔滨: 哈尔滨工业大学出版社, 1998: 73)
[24] Chen J D, Mo W L, Wang P, et al.Effects of tempering temperature on the impact toughness of steel 42CrMo[J]. Acta Metall. Sin., 2012, 48: 1186
[24] (陈俊丹, 莫文林, 王培等. 回火温度对42CrMo钢冲击韧性的影响[J]. 金属学报, 2012, 48: 1186)
[25] Yuan S P, Liu G, Wang R H, et al.Coupling effect of multiple precipitates on the ductile fracture of aged Al-Mg-Si alloys[J]. Scr. Mater., 2007, 57: 865
[26] Zhou H J, Tu M J, Deng Z J, et al.On the development of strength potentialities of metallic materials, the second part——Rational balance between strength and ductility or toughness[J]. J. Xi′an Jiaotong Univ., 1980, 14(1): 25
[26] (周惠久, 涂铭旌, 邓增杰等. 再论发挥金属材料强度潜力问题——强度、塑性、韧度的合理配合[J]. 西安交通大学学报, 1980, 14(1): 25)
[27] Shu D L.Mechanical Properties of Materials [M]. 2nd Ed., Beijing: China Machine Press, 2007: 15
[27] (束德林. 工程材料力学性能 [M]. 第2版. 北京: 机械工业出版社, 2007: 15)
[28] Zhou H J, Huang M Z.The Strength Theory of Metal Materials [M]. Beijing: Science Press, 1989: 215
[28] (周惠久, 黄明志. 金属材料强度学 [M]. 北京: 科学出版社, 1989: 215)
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[4] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[5] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[6] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[7] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[8] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[9] 葛进国, 卢照, 何思亮, 孙妍, 殷硕. 电弧熔丝增材制造2Cr13合金组织与性能各向异性行为[J]. 金属学报, 2023, 59(1): 157-168.
[10] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[11] 杨天野, 崔丽, 贺定勇, 黄晖. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58(9): 1108-1117.
[12] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.
[13] 张鑫, 崔博, 孙斌, 赵旭, 张欣, 刘庆锁, 董治中. Y元素对Cu-Al-Ni高温形状记忆合金性能的影响[J]. 金属学报, 2022, 58(8): 1065-1071.
[14] 刘仁慈, 王鹏, 曹如心, 倪明杰, 刘冬, 崔玉友, 杨锐. 700℃热暴露对 β 凝固 γ-TiAl合金表面组织及形貌的影响[J]. 金属学报, 2022, 58(8): 1003-1012.
[15] 张家榕, 李艳芬, 王光全, 包飞洋, 芮祥, 石全强, 严伟, 单以银, 杨柯. 热处理对一种双峰晶粒结构超低碳9Cr-ODS钢显微组织与力学性能的影响[J]. 金属学报, 2022, 58(5): 623-636.