Please wait a minute...
金属学报  2017, Vol. 53 Issue (3): 307-315    DOI: 10.11900/0412.1961.2016.00366
  本期目录 | 过刊浏览 |
各向异性和偏轴加载对1050车轮钢疲劳性能的影响
张青松1,朱振宇1,高杰维1,戴光泽1(),徐磊2,冯健1
1 西南交通大学材料科学与工程学院 成都 6100312 西华大学材料科学与工程学院 成都 610039
Effect of Anisotropy and Off-Axis Loading on Fatigue Property of 1050 Wheel Steel
Qingsong ZHANG1,Zhenyu ZHU1,Jiewei GAO1,Guangze DAI1(),Lei XU2,Jian FENG1
1 School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
2 School of Materials Science and Engineering, Xihua University, Chengdu 610039, China
全文: PDF(12858 KB)   HTML
摘要: 

研究了各向异性和偏轴加载对轧制1050车轮钢疲劳性能的影响,获得试样在2种特定加载条件下的疲劳极限,运用SEM观察疲劳断口形貌,并利用有限元分析软件Ansys对0°、30°、45° 3个不同偏轴加载角度的试样进行静力学分析。结果表明:随着试样与轧制方向角度的增加,疲劳极限逐渐降低,0°到45°下降比例约为9%;随着试样偏轴加载角度的增加,疲劳极限亦逐渐降低,0°到45°下降比例约为85%;在偏轴加载的情况下,试样承受的剪切应力与Von Mises等效应力较大,且随着偏轴加载角度的增加而增加。

关键词 1050钢各向异性偏轴加载有限元疲劳极限    
Abstract

Wheel is one of the key components of a train to transmit power and affect the security operation. With the rapidly development of high-speed railway, rolling contact fatigue of railway wheels has become an important issue with respect to failure. With the increasing of train speeds and axle loads, the wheel-rail dynamic stress and contact stress were increased, resulting in wheel out of round with off-axis wear and potential for derailment. SAE 1050 steel as a typical wheel steel is widely used in high-speed wheel and wagon wheel. Consequently, the wheel rolling contact fatigue performance under service process and the fatigue performance of wheel steel materials have been studied. However, there are less relevant results about the anisotropy of rolling and off-axis loading of wheel steel materials. To investigate the effect of anisotropy and off-axis loading on fatigue property of 1050 wheel steel, uniaxial fatigue tests were conducted at the conditions of 120 Hz and stress ratio R=0.1, and off-axis fatigue tests were conducted at the conditions of 55 Hz and R=0.1 at room temperature in air. All fatigue specimens were cut from bar round with the angles (0°, 30° and 45°) to rolling direction. The fatigue limit of specimens under two kinds of special loading conditions was obtained. Fracture surface of the specimen was observed by SEM. The finite element (FEM) analysis software (Ansys 14.0) was used to analyze static mechanics of specimens under three different off-axis loading angles (0°, 30° and 45°). The results showed that the fatigue limit decreased with increasing angle to rolling direction and the percentage of decline was 9%. The fatigue limit decreased with increasing off-axis loading angle and the percentage of decline was 85%. The shear stress and Von Mises stress were larger and increased with increasing off-axis loading angle when the specimen was subjected to off-axis loading.

Key words1050 steel    anisotropy    off-axis loading    finite element    fatigue limit
收稿日期: 2016-08-15      出版日期: 2016-12-09
基金资助:西南交通大学2015年研究生创新实验实践项目No;YC201509102

引用本文:

张青松,朱振宇,高杰维,戴光泽,徐磊,冯健. 各向异性和偏轴加载对1050车轮钢疲劳性能的影响[J]. 金属学报, 2017, 53(3): 307-315.
Qingsong ZHANG,Zhenyu ZHU,Jiewei GAO,Guangze DAI,Lei XU,Jian FENG. Effect of Anisotropy and Off-Axis Loading on Fatigue Property of 1050 Wheel Steel. Acta Metall Sin, 2017, 53(3): 307-315.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2016.00366      或      http://www.ams.org.cn/CN/Y2017/V53/I3/307

图1  疲劳试样形状与尺寸
图2  偏轴疲劳实验装夹方式
图3  与轧制方向成不同角度时1050钢的显微组织
Angle / (°) σb / MPa σs / MPa A / % Z / %
0
30
45
762
748
706
448
432
402
24.0
20.6
20.4
59.6
55.0
53.4
表1  与轧制方向成不同角度1050钢的拉伸性能
图4  疲劳极限与偏轴加载角度之间的关系
图5  静力学加载示意图
图6  静力学分析有限元模型
图7  静力学分析应力云图
图8  单轴加载0°试样断口形貌
图9  单轴加载30°试样断口形貌
图10  单轴加载45°试样断口形貌
图11  30°偏轴加载0°试样断口形貌
图12  45°偏轴加载0°试样断口形貌
[1] Ekberg A, Sotkovszki P.Anisotropy and rolling contact fatigue of railway wheels[J]. Int. J. Fatigue, 2001, 23: 29
[2] Chung C S, Kim H K.Multiaxial fatigue of a railway wheel steel[J]. J. Eng. Sci. Technol., 2015, 10: 1215
[3] UIC 510-5-2003. Technical approval of solid wheelsIC 510-5-2003. Technical approval of solid wheels[S]. UIC, 2003
[4] Ekberg A, Marais J.Effects of imperfections on fatigue initiation in railway wheels[J]. Proc. Inst. Mech. Eng., 2000, 214F: 45
[5] Cong T, Fu X Q, Zhang B, et al.Effect of fatigue crack initiation in wheel rims under condition of heavy haul and high speed[J]. Railw. Locomot. Car, 2014, 34(5): 24
[5] (丛韬, 付秀琴, 张斌等. 简析高速重载工况对车轮轮辋疲劳裂纹萌生的影响[J]. 铁道机车车辆, 2014, 34(5): 24)
[6] Ekberg A, Kabo E, Nielsen J C O, et al. Subsurface initiated rolling contact fatigue of railway wheels as generated by rail corrugation[J]. Int. J. Solids Struct., 2007, 44: 7975
[7] Liu Z X, Gu H C.Failure modes and materials performance of railway wheels[J]. J. Mater. Eng. Perform., 2000, 9: 580
[8] He C G, Huang Y B, Ma L, et al.Experimental investigation on the effect of tangential force on wear and rolling contact fatigue behaviors of wheel material[J]. Tribol. Int., 2015, 92: 307
[9] Zhou G Y, He C G, Wen G, et al.Fatigue damage mechanism of railway wheels under lateral forces[J]. Tribol. Int., 2015, 91: 160
[10] Lychagina T, Nikolayev D, Sanin A, et al.Investigation of rail wheel steel crystallographic texture changes due to modification and thermomechanical treatment[J]. IOP Conf. Ser.: Mater. Sci. Eng., 2015, 82: 012107
[11] Kwon S J, Seo J W, Jun H K, et al.Damage evaluation regarding to contact zones of high-speed train wheel subjected to thermal fatigue[J]. Eng. Failure Anal., 2015, 55: 327
[12] Lv W, Chen L J, Che X, et al.Influence of temperature and rolling direction on fatigue behavior of TC1 titanium alloy plate[J]. J. Shenyang Univ. Technol., 2012, 34: 504
[12] (吕伟, 陈立佳, 车欣等. 温度和轧制方向对TC1合金板材疲劳行为的影响[J]. 沈阳工业大学学报, 2012, 34: 504)
[13] Sayyidmousavi A, Bougherara H, Fawaz Z.A micromechanical approach for the fatigue failure prediction of unidirectional polymer matrix composites in off-axis loading including the effect of viscoelasticity[J]. Adv. Compos. Mater., 2015, 24(S1): 65
[14] Quaresimin M, Carraro P A, Maragoni L.Early stage damage in off-axis plies under fatigue loading[J]. Compos. Sci. Technol., 2016, 128: 147
[15] Kawai M, Kato K.Effects of R-ratio on the off-axis fatigue behavior of unidirectional hybrid GFRP/Al laminates at room temperature[J]. Int. J. Fatigue, 2006, 28: 1226
[16] Kawai M, Itoh N.A failure-mode based anisomorphic constant life diagram for a unidirectional carbon/epoxy laminate under off-axis fatigue loading at room temperature[J]. J. Compos. Mater., 2014, 48: 571
[17] Walther F, Eifler D.Fatigue life calculation of SAE 1050 and SAE 1065 steel under random loading[J]. Int. J. Fatigue, 2007, 29: 1885
[18] Wagner V, Starke P, Kerscher E, et al.Cyclic deformation behaviour of railway wheel steels in the very high cycle fatigue (VHCF) regime[J]. Int. J. Fatigue, 2011, 33: 69
[19] Ekberg A, Kabo E.Fatigue of railway wheels and rails under rolling contact and thermal loading——An overview[J]. Wear, 2005, 258: 1288
[20] Xiong Q Y, Yu S T, Ju J S. Fatigue analysis on wheel considering contact effect using FEM method [J]. Math. Probl. Eng., 2015, 2015: Article ID 314634
[21] Dai G Z, Zhu Z Y, Zhang Q S.Multiaxial fatigue fixture of high cycle fatigue testing machine [P]. Chin.Pat., 201510460569.0, 2015
[21] (戴光泽, 朱振宇, 张青松. 高周疲劳试验机的多轴疲劳试验夹具 [P]. 中国专利, 201510460569.0, 2015)
[22] Desimone H, Bernasconi A, Beretta S.On the application of Dang Van criterion to rolling contact fatigue[J]. Wear, 2006, 260: 567
[23] Morel F, Bastard M.A multiaxial life prediction method applied to a sequence of non similar loading in high cycle fatigue[J]. Int. J. Fatigue, 2003, 25: 1007
[24] Reis L, Li B, de Freitas M. A multiaxial fatigue approach to rolling contact fatigue in railways[J]. Int. J. Fatigue, 2014, 67: 191
[25] Qi D T, Cheng G X, Duan Q, et al.Multiaxial fatigue damage parameter for fibre-reinforced composites based on a critical plane approach[J]. J. Xi'an Jiaotong Univ., 2003, 37: 1182
[25] (戚东涛, 程光旭, 段权等. 基于临界平面法的复合材料多轴疲劳损伤参量研究[J]. 西安交通大学学报, 2003, 37: 1182)
[26] Fuoco R, Ferreira M M, Azevedo C R F. Failure analysis of a cast steel railway wheel[J]. Eng. Failure Anal., 2004, 11: 817
[1] 李学雄,徐东生,杨锐. 双相钛合金高温变形协调性的CPFEM研究[J]. 金属学报, 2019, 55(7): 928-938.
[2] 马晓琴, 詹清峰, 李金财, 刘青芳, 王保敏, 李润伟. 倾斜溅射对CoFeB薄膜条纹磁畴结构与磁各向异性的影响[J]. 金属学报, 2018, 54(9): 1281-1288.
[3] 黄明亮, 孙洪羽. 倒装芯片无铅凸点β-Sn晶粒取向与电迁移交互作用[J]. 金属学报, 2018, 54(7): 1077-1086.
[4] 王强, 董蒙, 孙金妹, 刘铁, 苑轶. 强磁场下合金凝固过程控制及功能材料制备[J]. 金属学报, 2018, 54(5): 742-756.
[5] 李旭东, 毛萍莉, 刘晏宇, 刘正, 王志, 王峰. 高应变速率下Mg-3Zn-1Y镁合金的各向异性及变形机制[J]. 金属学报, 2018, 54(4): 557-565.
[6] 季培蓓, 周立初, 周雪峰, 方峰, 蒋建清. 冷拉拔珠光体钢丝的力学性能各向异性研究[J]. 金属学报, 2018, 54(4): 494-500.
[7] 文舒, 董安平, 陆燕玲, 祝国梁, 疏达, 孙宝德. GH536高温合金选区激光熔化温度场和残余应力的有限元模拟[J]. 金属学报, 2018, 54(3): 393-403.
[8] 刘佳琳, 王玉敏, 张国兴, 张旭, 杨丽娜, 杨青, 杨锐. SiC单纤维增强TC17复合材料横向拉伸性能研究[J]. 金属学报, 2018, 54(12): 1809-1817.
[9] 李双明, 王斌强, 刘振鹏, 钟宏, 胡锐, 刘毅, 罗锡明. 高熔点金属Ir和Mo电子束区熔中不同取向晶体的竞争生长[J]. 金属学报, 2018, 54(10): 1435-1441.
[10] 林艳丽, 何祝斌, 初冠南, 闫永达. 利用管状试样测试各向异性材料双向应力状态力学性能的新方法[J]. 金属学报, 2017, 53(9): 1101-1109.
[11] 刘玉, 秦盛伟, 左训伟, 陈乃录, 戎咏华. 全淬透圆柱件淬火应力的有限元模拟及实验验证[J]. 金属学报, 2017, 53(6): 733-742.
[12] 周丽,崔超,贾清,马英石. γ-TiAl金属间化合物铣削加工实验与有限元模拟[J]. 金属学报, 2017, 53(4): 505-512.
[13] 郭舒,韩恩厚,王海涛,张志明,王俭秋. 核电站316L不锈钢弯头应力腐蚀行为的寿命预测[J]. 金属学报, 2017, 53(4): 455-464.
[14] 任伊宾, 赵浩川, 杨柯. 高氮无镍不锈钢接骨板的轻量化设计及生物力学研究:厚度减薄的影响[J]. 金属学报, 2017, 53(10): 1331-1336.
[15] 李永奎, 权纯逸, 陆善平, 焦清洋, 李世键, 孙忠海. TA15钛合金薄壁焊接件热处理校形研究*[J]. 金属学报, 2016, 52(3): 281-288.