Please wait a minute...
金属学报  2017, Vol. 53 Issue (3): 345-350    DOI: 10.11900/0412.1961.2016.00364
  本期目录 | 过刊浏览 |
2.25Cr1Mo合金高温低塑性的非平衡偏聚机理研究
王凯1,2(),刘浏1,徐庭栋1,2,董学东3
1 钢铁研究总院 北京 100081
2 钢铁研究总院高温合金新材料北京市重点实验室 北京 100081
3 东北特殊钢集团有限公司 大连 116105
Mechanism Study on Hot Ductility of 2.25Cr1Mo Alloy Based on Non-Equilibrium Grain-Boundary Segregation
Kai WANG1,2(),Liu LIU1,Tingdong XU1,2,Xuedong DONG3
1 Central Iron and Steel Research Institute, Beijing 100081, China
2 Beijing Key Laboratory of Advanced High Temperature Materials, Central Iron and Steel Research Institute,Beijing 100081, China
3 Dongbei Special Steel Group Co., LTD., Dalian 116105, China
引用本文:

王凯,刘浏,徐庭栋,董学东. 2.25Cr1Mo合金高温低塑性的非平衡偏聚机理研究[J]. 金属学报, 2017, 53(3): 345-350.
Kai WANG, Liu LIU, Tingdong XU, Xuedong DONG. Mechanism Study on Hot Ductility of 2.25Cr1Mo Alloy Based on Non-Equilibrium Grain-Boundary Segregation[J]. Acta Metall Sin, 2017, 53(3): 345-350.

全文: PDF(6096 KB)   HTML
摘要: 

以2.25Cr1Mo合金为研究对象,利用Gleeble热模拟试验机和Auger能谱仪(AES),研究了合金的高温低塑性发生机理。结果表明,合金高温低塑性发生在850 ℃附近,且塑性极小值对应着晶界杂质S偏聚浓度极大值。利用杂质S的非平衡晶界偏聚特征,解释了2.25Cr1Mo合金高温低塑性现象。

关键词 高温低塑性现象非平衡晶界偏聚    
Abstract

Almost all ductile metals and alloys have a ductility minimum in the intermediate temperature range at about from 0.5 to 0.8 melt point, with an intergranular fracture mode l (intermediate temperature brittleness, ITB, or intermediate temperature ductility minimum, ITDM). That was found in Ni-based alloys, Fe-based alloys, Co-based alloys, Ti-based alloys, intermetallic compounds and Al-Mg alloys. One of the problems specific to the continuous casting of steels is transverse cracking, which is induced by the ITB of steel, called as hot ductility. The mechanisms suggested are mostly related to the especial properties such as ferrite mechanism for steels and precipitates mechanism at grain-boundaries. It is clear that the ferrite mechanism cannot clarify the ITB of austenitic steels and the precipitates mechanism cannot clarify that of metals and alloys which have no precipitates at grain-boundaries. In this work, based on the prior works for single-phase and phase transition alloys, the mechanism of hot-ductility for 2.25Cr1Mo alloy was analyzed by using Gleeble machine and Auger spectroscopy (AES). The results show the ductility minimum near 850 ℃ corresponds to the maximum concentration of the impurity sulfur at grain boundaries. And the hot ductility of 2.25Cr1Mo alloy can be explained reasonably by non-equilibrium grain-boundary segregation of sulfur.

Key wordshot ductility    non-equilibrium grain-boundary segregation
收稿日期: 2016-08-15     
图1  2.25Cr1Mo合金实验工艺示意图
图2  2.25CrMo合金的断面收缩率-温度曲线
图3  2.25Cr1Mo合金不同温度高温拉伸断口形貌
图4  2.25Cr1Mo合金不同温度高温拉伸断口显微组织
图5  不同冷速下2.25Cr1Mo合金850 ℃高温断口显微组织
图6  试样以20 ℃/s冷却至不同温度拉伸前试样晶界的AES谱线
[1] Lankford W T.Some considerations of strength and ductility in the continuous-casting process[J]. Metall. Trans., 1972, 3: 1331
[2] Mintz B, Yue S, Jonas J J.Hot ductility of steels and its relationship to the problem of transverse cracking during continuous casting[J]. Int. Mater. Rev., 1991, 36: 187
[3] Mintz B.The influence of composition on the hot ductility of steels and to the problem of transverse cracking[J]. ISIJ Int., 1999, 39: 833
[4] Suzuki H G, Takakura E, Eylon D.Hot strength and hot ductility of titanium alloys—a challenge for continuous casting process[J]. Mater. Sci. Eng., 1999, A263: 230
[5] Horikawa K, Kuramoto S, Kanno M.Intergranular fracture caused by trace impurities in an Al-5.5mol%Mg alloy[J]. Acta Mater., 2001, 49: 3981
[6] Tang F, Emura S, Hagiwara M.Tensile properties of tungsten-modified orthorhombic Ti-22Al-20Nb-2W alloy[J]. Scr. Mater., 2001, 44: 671
[7] Pike L M, Liu C T.Environmental effects on the tensile properties of two Ni3Si-based alloys[J]. Scr. Mater., 2000, 42: 265
[8] Wang K, Xu T D, Wang Y Q, et al.Intermediate-temperature embrittlement induced by non-equilibrium grain-boundary segregation of sulfur in Ni-Cr-Fe alloy[J]. Philos. Mag. Lett., 2009, 89: 725
[9] Wang K, Xu T D, Song S H, et al.Graphical representation for isothermal kinetics of non-equilibrium grain-boundary segregation[J]. Mater. Char., 2011, 62: 575
[10] Wang K, Chun Y, Si H.Effect of non-equilibrium grain-boundary segregation of phosphorus on the intermediate-temperature ductility minimum of an Fe-17Cr alloy[J]. Mater. Sci. Eng., 2013, A587: 228
[11] Xu T D, Wang K, Song S H.Theoretical progress in non-equilibrium grain-boundary segregation (I): Thermally induced non-equilibrium grain-boundary segregation and intergranular embrittlement[J]. Sci. China, 2009, 52E: 893
[12] Xu T D, Zheng L, Wang K, et al.Unified mechanism of intergranular embrittlement based on non-equilibrium grain boundary segregation[J]. Int. Mater. Rev., 2013, 58: 263
[13] Chen X M, Song S H, Weng L Q, et al.A consideration of intergranular fracture caused by trace impurity sodium in an Al-5wt.%Mg alloy[J]. Scr. Mater., 2008, 58: 902
[14] Dong J X, Zhang M C, Xie X S, et al.Interfacial segregation and cosegregation behaviour in a nickel-base alloy 718[J]. Mater. Sci. Eng., 2002, A328: 8
[15] McLean D. Grain Boundaries in Metals [M]. London: Oxford University Press, 1957: 50
[16] Xu T D, Cheng B Y.Kinetics of non-equilibrium grain-boundary segregation[J]. Prog. Mater. Sci., 2004, 49: 109
[17] Xu T D.Non-equilibrium grain-boundary segregation kinetics[J]. J. Mater. Sci., 1987, 22: 337
[18] Xu T D.The critical time and critical cooling rate of non-equilibrium grain-boundary segregation[J]. J. Mater. Sci. Lett., 1988, 7: 241
[19] Xu T D, Song S H.A kinetic model of non-equilibrium grain-boundary segregation[J]. Acta Metall., 1989, 37: 2499
No related articles found!