Please wait a minute...
金属学报  2016, Vol. 52 Issue (10): 1297-1310    DOI: 10.11900/0412.1961.2016.00361
  本期目录 | 过刊浏览 |
合金凝固过程中显微组织演化的元胞自动机模拟*
朱鸣芳1(),汤倩玉1,张庆宇1,潘诗琰2,孙东科3
1 东南大学江苏省先进金属材料高技术研究重点实验室, 南京 211189
2 南京理工大学工程训练中心, 南京 210094
3 上海交通大学上海市先进高温材料及其精密成形重点实验室, 上海 200240
CELLULAR AUTOMATON MODELING OF MICRO-STRUCTURE EVOLUTION DURING ALLOY SOLIDIFICATION
Mingfang ZHU1(),Qianyu TANG1,Qingyu ZHANG1,Shiyan PAN2,Dongke SUN3
1 Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing 211189, China
2 Engineering Training Center, Nanjing University of Science and Technology, Nanjing 210094, China
3 Shanghai Key Laboratory of Advanced High-Temperature Materials and Precision Forming, Shanghai Jiao Tong University, Shanghai 200240, China
全文: PDF(7078 KB)   HTML
  
摘要: 

元胞自动机(cellular automaton, CA)方法能够有效地描述凝固过程中显微组织形貌的复杂演化过程, 且计算效率较高, 展现出良好的实际应用潜力. 近20年来, CA模型取得了很大的进展. 本文简要综述几种模拟凝固组织的CA模型, 包括纯扩散和对流作用下的枝晶生长、共晶凝固、多元合金中的热力学和动力学耦合、枝晶耦合凝固气孔的生长、以及多尺度的耦合模拟. 最后, 对今后CA模型的发展提出作者的几点思考.

关键词 合金凝固显微组织数值模拟元胞自动机    
Abstract

Microstructure evolution during solidification is a complex process controlled by the interplay of heat, solute, capillary, thermodynamics and kinetics. Computational modeling can provide detailed information about the interactions between transport phenomena and phase transformation. Thus, it has emerged as an important and indispensable tool in studying the underlying physics of microstructural formation in solidification. During the last two decades, extensive efforts have been dedicated to explore the numerical models based on the methods of phase field (PF), cellular automaton (CA), front tracking (FT), and level set (LS), for the simulation of solidification microstructures. The CA approach can reproduce various realistic microstructure features with an acceptable computational efficiency, indicating the considerable potential for practical applications. It has, therefore, drawn great interest in academia and achieved remarkable advances in the simulation of microstructures. This paper gives an overview of CA based models, spanning from the meso-scale to the micro-scale, for the prediction of microstruc ture evolution during alloy solidification. The governing equations and numerical algorithms of CA based models and derived coupling models are summarized, including the calculations of nucleation, growth kinetics, interface curvature, surface tension anisotropy and crystallographic orientation, thermal and solutal transport, melt convection utilizing the lattice Boltzmann method (LBM), the coupling of CA with control volume (CV) method, the coupling of CA with CALPHAD approach for multi-component alloy systems, as well as the approaches for eliminating the artificial anisotropy caused by the CA square cells. The main achievements in this field are addressed by presenting examples encompassing a wide variety of problems involving dendritic growth in pure diffusion and with melt convection, eutectic solidification, microstructure formation in multi-component alloys, dendritic growth with gas pore formation, and multi-scale simulation. Finally, the future prospects and challenges for the CA modeling of solidification microstructures are discussed.

Key wordsalloy    solidification    microstructure    numerical modeling    cellular automaton
收稿日期: 2016-08-05      出版日期: 2016-09-05
:     
基金资助:* 国家自然科学基金项目51371051和51501091, 中央高校基本科研业务费专项资金项目2242016K40008, 以及东南大学优秀博士论文培育基金YBJJ1627资助

引用本文:

朱鸣芳, 汤倩玉, 张庆宇, 潘诗琰, 孙东科. 合金凝固过程中显微组织演化的元胞自动机模拟*[J]. 金属学报, 2016, 52(10): 1297-1310.
Mingfang ZHU, Qianyu TANG, Qingyu ZHANG, Shiyan PAN, Dongke SUN. CELLULAR AUTOMATON MODELING OF MICRO-STRUCTURE EVOLUTION DURING ALLOY SOLIDIFICATION. Acta Metall Sin, 2016, 52(10): 1297-1310.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2016.00361      或      http://www.ams.org.cn/CN/Y2016/V52/I10/1297

图1  在铸型壁和熔体内的形核分布
图2  CV网格节点和CA元胞的耦合示意图[14]
图3  模拟的Ni-0.4%Cu (质量分数)合金在1.5 K/s的冷速下等轴枝晶的演化
图4  模拟的Al-2.0%Mg-1.0%Si (质量分数)合金在纯扩散和强制对流下的柱状晶生长形貌
图5  模拟的初始成分C0=4.1%C (质量分数) 的亚共晶球墨铸铁凝固时的形貌演化
图6  模拟的Al-7%Si-1.5%Mg (质量分数)合金枝晶和共晶组织演化
图7  模拟的Al-7%Si (质量分数)合金中枝晶生长与H气孔形成的形貌演化
[1] Zhao J Z, Li L, Zhang X F.Acta Metall Sin, 2014; 50: 641
[1] (赵九洲, 李璐, 张显飞. 金属学报, 2014; 50: 641)
[2] Zhu M F, Pan S Y, Sun D K, Zhao H L.ISIJ Int, 2010; 50: 1851
[3] Rappaz M, Gandin C A.Acta Metall Mater, 1993; 41: 345
[4] Gandin C A, Rappaz M.Acta Metall Mater, 1994; 42: 2233
[5] Gandin C A, Desbiolles J L, Rappaz M, Thevoz P.Metall Mater Trans, 1999; 30A: 3153
[6] Lee K Y, Hong C P.ISIJ Int, 1997; 37: 38
[7] Cho I S, Hong C P.ISIJ Int, 1997; 37: 1098
[8] Chang Y H, Lee S M, Lee K Y, Hong C P.ISIJ Int, 1998; 38: 63
[9] Lee S Y, Lee S M, Hong C P.ISIJ Int, 2000; 40: 48
[10] Takatani H, Gandin C A, Rappaz M.Acta Mater, 2000; 48: 675
[11] Wu S P, Liu D R, Guo J J, Fu H Z.Trans Nonferrous Met Soc China, 2005; 15: 291
[12] Dilthey U, Pavlik V.In: Thomas B G, Beckermann C eds., Proc 8th Int Conf on Modeling of Casting Welding and Advanced Solidification, Warrendale: The Minerals Metals Materials Society, 1998: 589
[13] Nastac L.Acta Mater, l999; 47: 4253
[14] Zhu M F, Hong C P.ISIJ Int, 2001; 41: 436
[15] Zhu M F, Kim J M, Hong C P.ISIJ Int, 2001; 41: 992
[16] Shin Y H, Hong C P.ISIJ Int, 2002; 42: 359
[17] Xu Q Y, Feng W M, Liu B C, Xiong S M.Acta Metall Sin, 2002; 38: 799
[17] (许庆彦, 冯伟明, 柳百成, 熊守美. 金属学报, 2002; 38: 799)
[18] Wang W, Lee P D, McLean M.Acta Mater, 2003; 51: 2971
[19] Li Q, Li D Z, Qian B N.Acta Phys Sin, 2004; 53: 3477
[19] (李强, 李殿中, 钱百年. 物理学报, 2004; 53: 3477)
[20] Li Q, Li D Z, Qian B N.Acta Metall Sin, 2004; 40: 634
[20] (李强, 李殿中, 钱百年. 金属学报, 2004; 40: 634)
[21] Li Q, Li D Z, Qian B N.Acta Metall Sin, 2004; 40: 1215
[21] (李强, 李殿中, 钱百年. 金属学报, 2004; 40: 1215)
[22] Beltran-Sanchez L, Stefanescu D M.Metall Mater Trans, 2004; 35A: 2471
[23] Zhu M F, Chen J, Sun G X, Hong C P.Acta Metall Sin, 2005; 41: 583
[23] (朱鸣芳, 陈晋, 孙国雄, 洪俊杓. 金属学报, 2005; 41: 583)
[24] Yu J, Xu Q Y, Cui K, Liu B C.Acta Metall Sin, 2007; 43: 731
[24] (于靖, 许庆彦, 崔锴, 柳百成. 金属学报, 2007; 43: 731)
[25] Yin H, Felicelli S D.Acta Mater, 2010; 58: 1455
[26] Chen R, Xu Q Y, Liu B C.J Mater Sci Technol, 2014; 30: 1311
[27] Thevoz P, Desbioles J L, Rappaz M.Metall. Trans, 1989; 20A: 311
[28] Shan B W, Lin X, Wei L, Huang W D.Acta Phys Sin, 2009; 58: 1132
[28] (单博炜, 林鑫, 魏雷, 黄卫东. 物理学报, 2009; 58: 1132)
[29] Zhu M F, Stefanescu D M.Acta Mater, 2007; 55: 1741
[30] Wei L, Lin X, Wang M, Huang W D.Appl Phys, 2011; 103A: 123
[31] Trivedi R, Kurz W.Int Mater Rev, 1994; 39: 49
[32] Wei L, Lin X, Wang M, Huang W D.Acta Phys Sin, 2012; 61: 098104
[32] (魏雷, 林鑫, 王猛, 黄卫东. 物理学报, 2012; 61: 098104)
[33] Pan S Y.PhD Dissertation, Southeast University, Nanjing, 2013
[33] (潘诗琰. 东南大学博士学位论文, 南京, 2013)
[34] Dong H B, Lee P D.Acta Metall, 2005; 53: 659
[35] Guo Y G, Li S M, Liu L, Fu H Z.Acta Metall Sin, 2008; 44: 365
[35] (郭勇冠, 李双明, 刘林, 傅恒志. 金属学报, 2008; 44: 365)
[36] Shan B W, Huang W D, Lin X, Wei L.Acta Metall Sin, 2008; 44: 1042
[36] (单博炜, 黄卫东, 林鑫, 魏雷. 金属学报, 2008; 44: 1042)
[37] Zhang Y P, Lin X, Wei L, Wang M, Peng D J, Huang W D.Acta Phys Sin, 2012; 61: 228106
[37] (张云鹏, 林鑫, 魏雷, 王猛, 彭东剑, 黄卫东. 物理学报, 2012; 61: 228106)
[38] Shi Y F, Xu Q Y, Gong M, Liu B C.Acta Metall Sin, 2011; 47: 620
[38] (石玉峰, 许庆彦, 龚铭, 柳百成. 金属学报, 2011; 47: 620)
[39] Zhang H, Xu Q Y, Shi Z X, Liu B C.Acta Metall Sin, 2014; 50: 345
[39] (张航, 许庆彦, 史振学, 柳百成. 金属学报, 2014; 50: 345)
[40] Chen R, Xu Q Y, Liu B C.Acta Phys Sin, 2014; 63: 188102
[40] (陈瑞, 许庆彦, 柳百成. 物理学报, 2014; 63: 188102)
[41] Zhang Y P, Lin X, Wei L, Peng D J, Wang M, Huang W D.Acta Phys Sin, 2013; 62: 178105
[41] (张云鹏, 林鑫, 魏雷, 彭东剑, 王猛, 黄卫东. 物理学报, 2013; 62: 178105)
[42] Wei L, Lin X, Wang M, Huang W D.Chin Phys, 2015; 24B: 078108
[43] Pan S Y, Zhu M F.Acta Metall, 2010; 58: 340
[44] Jiang H X, Zhao J Z.Acta Metall Sin, 2011; 47: 1099
[44] (江鸿翔, 赵九洲. 金属学报, 2011; 47: 1099)
[45] Wei L, Lin X, Wang M, Huang W D.Physica, 2012; 407B: 2471
[46] Shi Y F, Xu Q Y, Liu B C.Trans Nonferrous Met Soc China, 2012; 22: 2756
[47] Fu Z N, Xu Q Y, Xiong S M.Chin J Nonferrous Met, 2007; 17: 1567
[47] (付振南, 许庆彦, 熊守美. 中国有色金属学报, 2007; 17: 1567)
[48] Huo L, Han Z Q, Liu B C.Acta Metall Sin, 2009; 45: 1414
[48] (霍亮, 韩志强, 柳百成. 金属学报, 2009; 45: 1414)
[49] Wu M W, Xiong S M.Acta Metall Sin, 2010; 46: 1534
[49] (吴孟武, 熊守美. 金属学报, 2010; 46: 1534)
[50] Wu M W, Xiong S M.Acta Metall Sin, 2012; 25: 169
[50] (吴孟武, 熊守美. 金属学报, 2012; 25: 169)
[51] Trivedi R, Miyahara H, Mazumder P, Simsek E, Tewari S N.J Cryst Growth, 2001; 222: 365
[52] Zhu M F, Lee S Y, Hong C P.Phys Rev, 2004; 69E: 061610
[53] Zhu M F, Dai T, Lee S Y, Hong C P.Sci China, 2005; 48E: 241
[54] Zhu M F, Dai T, Lee S Y, Hong C P.Comput Math Appl, 2008; 55: 1620
[55] Yuan L, Lee P D.Model Simul Mater Sci Eng, 2010; 18: 055008
[56] Dong Z B, Wang S J, Ma R, Wei Y H, Song K J, Zhai G F.J Mater Sci Technol, 2011; 27: 183
[57] Shi Y F, Xu Q Y, Liu B C.Acta Phys Sin, 2011; 60: 126101
[57] (石玉峰, 许庆彦, 柳百成. 物理学报, 2011; 60: 126101)
[58] Wang W L, Luo S, Zhu M Y.Comp Mater Sci, 2014; 95: 136
[59] Zhang X F, Zhao J Z.Acta Metall Sin, 2012; 48: 615
[59] (张显飞, 赵九洲. 金属学报, 2012; 48: 615)
[60] Karagadde S, Yuan L, Shevchenko N, Eckert D S, Lee P D.Acta Mater, 2014; 79: 168
[61] Yang M H, Guo Z P, Xiong S M.Chin J Nonferrous Met, 2015; 25: 835
[61] (杨满红, 郭志鹏, 熊守美. 中国有色金属学报, 2015; 25: 835)
[62] Qian Y H, D'Humieres D, Lallemand P.Europhys Lett, 1992; 17: 479
[63] Sun D K, Zhu M F, Pan S Y, Raabe D.Acta Mater, 2009; 57: 1755
[64] Sun D K, Zhu M F, Pan S Y, Yang C R, Raabe D.Comput Math Appl, 2011; 61: 3585
[65] Yang Z R, Sun D K, Pan S Y, Dai T, Zhu M F.Acta Metall Sin, 2009; 45: 43
[65] (杨朝蓉, 孙东科, 潘诗琰, 戴挺, 朱鸣芳. 金属学报, 2009; 45: 43)
[66] Zhu M F, Sun D K, Pan S Y, Zhang Q Y, Raabe D.Modell Simul Mater Sci Eng, 2014; 22: 034006
[67] Yin H, Felicelli S D, Wang L.Acta Mater, 2011; 59: 3124
[68] Sun D K, Zhu M F, Dai T, Cao W S, Chen S L, Raabe D, Hong C P.Int J Cast Met Res, 2011; 24: 177
[69] Sun D K, Zhang Q Y, Cao W S, Zhu M F.Chin Phys Lett, 2015; 32: 068103
[70] Sun D K.PhD Dissertation, Southeast University, Nanjing, 2010
[70] (孙东科. 东南大学博士学位论文, 南京, 2010)
[71] Jarvis D J, Brown S G R.Mater Sci Technol, 2000; 16: 1420
[72] Zhu M F, Hong C P.Phys Rev, 2002; 66B: 155428
[73] Zhu M F, Hong C P.Metall Mater Trans, 2004; 35A: 1555
[74] Chen R, Xu Q Y, Liu B C.China Foundry, 2016; 13: 114
[75] Wu M W, Xiong S M.Acta Phys Sin, 2011; 60: 058103
[75] (吴孟武, 熊守美. 物理学报, 2011; 60: 058103)
[76] Himemiya T.Mater Trans, 2012; 53: 1652
[77] Shi Y F, Xu Q Y, Liu B C.Acta Metall Sin, 2012; 48: 41
[77] (石玉峰, 徐庆彦, 柳百成. 金属学报, 2012; 48: 41)
[78] Charbon C, Rappaz M.In: Lesoult G, Lacaze J eds., Proc 5th Int Conf on Physical Metallurgy of Cast Iron, Switzerland: Scitec Publications, 1997: 453
[79] Ruxanda R, Beltran-Sanchez L, Massone J, Stefanescu D M.AFS Trans, 2001; 109: 1037
[80] Gurgul D, Burbelko A.Arch Metall Mater, 2010; 55: 53
[81] Burbelko A, Fras E, Gurgul D, Kapturkiewicz W, Sikora J.Key Eng Mater, 2011; 457: 330
[82] Burbelko A A, Gurgul D, Kapturkiewic W, Górny M.Mater Sci Eng, 2012; 33: 012083
[83] Zhao H L, Zhu M F, Stefanescu D M.Key Eng Mater, 2011; 457: 324
[84] Zhang L, Zhao H L, Zhu M F.Acta Metall Sin, 2015; 51: 48
[84] (张蕾, 赵红蕾, 朱鸣芳. 金属学报, 2015; 51: 48)
[85] Zhu M F, Zhang L, Zhao H L, Stefanescu D M.Acta Mater, 2015; 84: 413
[86] Zhu M F, Cao W, Chen S L, Hong C P, Chang Y A.J Phase Equilib Diffus, 2007; 28: 130
[87] Dai T, Zhu M F, Chen S L, Cao W S, Hong C P.Acta Metall Sin, 2008; 10: 1175
[87] (戴挺, 朱鸣芳, 陈双林, 曹伟生, 洪俊杓. 金属学报, 2008; 10: 1175)
[88] Shi Y F, Xu Q Y, Liu B C.Acta Phys Sin, 2012; 61: 108101
[88] (石玉峰, 许庆彦, 柳百成. 物理学报, 2012; 61: 108101)
[89] Zhang X F, Zhao J Z, Jiang H X, Zhu M F.Acta Mater, 2012; 60: 2249
[90] Zhang X F, Zhao J Z.J Cryst Growth, 2014; 391: 52
[91] Chen R, Xu Q Y, Wu Q F, Guo H T, Liu B C.Acta Metall Sin, 2015; 51: 733
[91] (陈瑞, 许庆彦, 吴勤芳, 郭会廷, 柳百成. 金属学报, 2015; 51: 733)
[92] Chen R, Xu Q Y, Liu B C.Acta Metall Sin, 2015; 28: 173
[92] (陈瑞, 许庆彦, 柳百成. 金属学报, 2015; 28: 173)
[93] Zhao Y, Qin R S, Chen D F.J Cryst Growth, 2013; 377: 72
[94] Wang T T.Master Thesis, Southeast University, Nanjing, 2016
[94] (王韬涛. 东南大学硕士学位论文, 南京, 2016)
[95] Atwood R C, Lee P D.Acta Mater, 2003; 51: 5447
[96] Lee P D, Chirazi A, Atwood R C, Wang W.Mater Sci Eng, 2004; A365: 57
[97] Dong S Y, Xiong S M, Liu B C.J Mater Sci Technol, 2004; 20: 23
[98] Hang Z Q, Li J X, Yang W, Zhao H D, Liu B C.Acta Metall Sin, 2011; 47: 7
[98] (韩志强, 李金玺, 杨文, 赵海东, 柳百成. 金属学报, 2011; 47: 7)
[99] Sasikumar R, Walker M J, Savithri S, Sundarraj S.Modell Simul Mater Sci Eng, 2008; 16: 035009
[100] Li Z Y, Zhu M F, Dai T.Acta Metall Sin, 2013; 49: 1032
[100] (李正扬, 朱鸣芳, 戴挺. 金属学报, 2013; 49: 1032)
[101] Zhu M F, Li Z Y, An D, Zhang Q Y, Dai T.ISIJ Int, 2014; 54: 384
[102] Wang T T, An D, Zhang Q Y, Dai T, Zhu M F.IOP Conf Ser Mater Sci Eng, 2015; 84: 012046
[103] Wu W, Sun D K, Dai T, Zhu M F.Acta Phys Sin, 2012; 61: 150501
[103] (吴伟, 孙东科, 戴挺, 朱鸣芳. 物理学报, 2012; 61: 150501)
[104] Wu W, Zhu M F, Sun D K, Dai T, Han Q Y, Raabe D.IOP Conf Ser Mater Sci Eng, 2012; 33: 012103
[105] Chen H N, Sun D K, Dai T, Zhu M F.Acta Phys Sin, 2013; 63: 150502
[105] (陈海楠, 孙东科, 戴挺, 朱鸣芳. 物理学报, 2013; 63: 150502)
[106] Sun D K, Zhu M F, Wang J, Baode S.Int J Heat Mass Trans, 2016; 94: 474
[107] Liu D R, Mangelinck-No?l N, Gandin C A, Zimmermann L G, Sturz L, Nguyen-Thi H, Billia B.Acta Mater, 2015; 93: 24
[108] Li D Z, Du Q, Hu Z Y, Li Y Y.Acta Metall Sin, 1999; 35: 1201
[108] (李殿中, 杜强, 胡志勇, 李依依. 金属学报, 1999; 35: 1201)
[109] Kang X H, Du Q, Li D Z, Li Y Y.Acta Metall Sin, 2004; 40: 452
[109] (康秀红, 杜强, 李殿中, 李依依. 金属学报, 2004; 40: 452)
[110] Xu Q Y, Liu B C.Mater Trans, 2001; 42: 2316
[111] Feng W M, Xu Q Y, Liu B C.ISIJ Int, 2002; 42: 702
[112] Liu B C, Xu Q Y, Jing T, Shen H F, Han Z Q.JOM, 2011; 63(4): 19
[113] Meng X B, Li J G, Jin T, Sun X F, Sun C B, Hu Z Q.J Mater Sci Technol, 2011; 27: 118
[114] Pan D, Xu Q Y, Yu J, Liu B C, Li J R, Yuan H L, Jin H P.Int J Cast Metal Res, 2008; 21: 308
[115] Pan D, Xu Q Y, Liu B C, Yuan H L, Jin H P.JOM, 2010; 62(5): 30
[116] Pan D, Xu Q Y, Liu B C.Sci China, 2011; 54G: 851
[117] Zhang H, Xu Q Y, Tang N, Pan D, Liu B C.Sci China, 2011; 54E: 3191
[118] Yan X W, Tang N, Liu X F, Shui G Y, Xu Q Y, Liu B C.Acta Metall Sin, 2015; 10: 1288
[118] (闫学伟, 唐宁, 刘孝福, 税国彦, 许庆彦, 柳百成. 金属学报, 2015; 10: 1288)
[119] Li B K, Wang F, Zhang H, Chen M Q.J Iron Steel Res Int, 2011; 52: 159
[120] Li B K, Wang Q, Wang F, Chen M Q.JOM, 2014; 66(7): 1153
[121] Han R H, Dong W C, Lu S P, Li D Z, Li Y Y.Acta Phys Sin, 2014; 63: 228103
[121] (韩日宏, 董文超, 陆善平, 李殿中, 李依依. 物理学报, 2014; 63: 228103)
[122] Wei L, Lin X, Wang M, Huang W D.Acta Phys Sin, 2015; 64: 018103
[122] (魏雷, 林鑫, 王猛, 黄卫东. 物理学报, 2015; 64: 018103)
[123] Luo S, Zhu M Y, Louhenkilpi S.ISIJ Int, 2012; 52: 823
[124] Sun T, Yue F, Wu H J, Guo C, Li Y, Ma Z C.J Iron Steel Res Int, 2016; 23: 329
[125] Liu D R, Wu S P, Guo J J, Su Y Q, Fu H Z.Acta Metall Sin, 2006; 42: 437
[125] (刘东戎, 吴士平, 郭景杰, 苏彦庆, 傅恒志. 金属学报, 2006; 42: 437)
[126] Liu D R, Reinhart G, Mangelinck-No?l N, Gandin C A, Nguyen-Thi H, Billia B.ISIJ Int, 2014; 54: 392
[1] 戴培元,胡兴,逯世杰,王义峰,邓德安. 尺寸因素对2D轴对称模型计算不锈钢管焊接残余应力精度的影响[J]. 金属学报, 2019, 55(8): 1058-1066.
[2] 李玲,姚生莲,赵晓丽,杨佳佳,王野熹,王鲁宁. 阳极氧化法制备Zr-17Nb合金表面氧化物纳米管阵列及其性能研究[J]. 金属学报, 2019, 55(8): 1008-1018.
[3] 秦海龙,张瑞尧,毕中南,杜洪标,张金辉. GH4169合金圆盘时效过程残余应力的演化规律研究[J]. 金属学报, 2019, 55(8): 997-1007.
[4] 马晋遥,王晋,赵云松,张剑,张跃飞,李吉学,张泽. 一种第二代镍基单晶高温合金1150 ℃原位拉伸断裂机制研究[J]. 金属学报, 2019, 55(8): 987-996.
[5] 邓丽萍,崔凯旋,汪炳叔,向红亮,李强. AZ31镁合金室温多道次压缩过程微观组织和织构演变的研究[J]. 金属学报, 2019, 55(8): 976-986.
[6] 蔡超,李煬,李劲风,张昭,张鉴清. 2A97 Al-Li合金薄板时效析出与电位及晶间腐蚀的相关性研究[J]. 金属学报, 2019, 55(8): 958-966.
[7] 陈兴品,李文佳,任平,曹文全,刘庆. C含量对Fe-Mn-Al-C低密度钢组织和性能的影响[J]. 金属学报, 2019, 55(8): 951-957.
[8] 李学雄,徐东生,杨锐. 双相钛合金高温变形协调性的CPFEM研究[J]. 金属学报, 2019, 55(7): 928-938.
[9] 王常帅,郭莉莉,唐丽英,周荣灿,郭建亭,周兰章. GH984G合金在700 ℃水蒸气中的氧化行为[J]. 金属学报, 2019, 55(7): 893-901.
[10] 杜随更,高漫,徐婉婷,王喜锋. TC11/TC17钛合金线性摩擦焊接头界面研究[J]. 金属学报, 2019, 55(7): 885-892.
[11] 吴春雷,李德伟,朱晓伟,王强. 电磁旋流水口连铸技术对小方坯凝固组织形貌和宏观偏析的影响[J]. 金属学报, 2019, 55(7): 875-884.
[12] 魏琳,王志军,吴庆峰,尚旭亮,李俊杰,王锦程. Mo元素及热处理对Ni2CrFeMox高熵合金在NaCl溶液中耐蚀性能的影响[J]. 金属学报, 2019, 55(7): 840-848.
[13] 黎旺,孙倩,江鸿翔,赵九洲. Al-Bi合金凝固过程及微合金化元素Sn的影响[J]. 金属学报, 2019, 55(7): 831-839.
[14] 张正延,柴锋,罗小兵,陈刚,杨才福,苏航. 调质态含Cu高强钢的强化机理及钢中Cu的析出行为[J]. 金属学报, 2019, 55(6): 783-791.
[15] 李博,张忠铧,刘华松,罗明,兰鹏,唐海燕,张家泉. 高强耐蚀管钢点状偏析及带状缺陷的特征与演变[J]. 金属学报, 2019, 55(6): 762-772.