Please wait a minute...
金属学报  2016, Vol. 52 Issue (10): 1297-1310    DOI: 10.11900/0412.1961.2016.00361
  本期目录 | 过刊浏览 |
合金凝固过程中显微组织演化的元胞自动机模拟*
朱鸣芳1(),汤倩玉1,张庆宇1,潘诗琰2,孙东科3
1 东南大学江苏省先进金属材料高技术研究重点实验室, 南京 211189
2 南京理工大学工程训练中心, 南京 210094
3 上海交通大学上海市先进高温材料及其精密成形重点实验室, 上海 200240
CELLULAR AUTOMATON MODELING OF MICRO-STRUCTURE EVOLUTION DURING ALLOY SOLIDIFICATION
Mingfang ZHU1(),Qianyu TANG1,Qingyu ZHANG1,Shiyan PAN2,Dongke SUN3
1 Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing 211189, China
2 Engineering Training Center, Nanjing University of Science and Technology, Nanjing 210094, China
3 Shanghai Key Laboratory of Advanced High-Temperature Materials and Precision Forming, Shanghai Jiao Tong University, Shanghai 200240, China
全文: PDF(7078 KB)   HTML
  
摘要: 

元胞自动机(cellular automaton, CA)方法能够有效地描述凝固过程中显微组织形貌的复杂演化过程, 且计算效率较高, 展现出良好的实际应用潜力. 近20年来, CA模型取得了很大的进展. 本文简要综述几种模拟凝固组织的CA模型, 包括纯扩散和对流作用下的枝晶生长、共晶凝固、多元合金中的热力学和动力学耦合、枝晶耦合凝固气孔的生长、以及多尺度的耦合模拟. 最后, 对今后CA模型的发展提出作者的几点思考.

关键词 合金凝固显微组织数值模拟元胞自动机    
Abstract

Microstructure evolution during solidification is a complex process controlled by the interplay of heat, solute, capillary, thermodynamics and kinetics. Computational modeling can provide detailed information about the interactions between transport phenomena and phase transformation. Thus, it has emerged as an important and indispensable tool in studying the underlying physics of microstructural formation in solidification. During the last two decades, extensive efforts have been dedicated to explore the numerical models based on the methods of phase field (PF), cellular automaton (CA), front tracking (FT), and level set (LS), for the simulation of solidification microstructures. The CA approach can reproduce various realistic microstructure features with an acceptable computational efficiency, indicating the considerable potential for practical applications. It has, therefore, drawn great interest in academia and achieved remarkable advances in the simulation of microstructures. This paper gives an overview of CA based models, spanning from the meso-scale to the micro-scale, for the prediction of microstruc ture evolution during alloy solidification. The governing equations and numerical algorithms of CA based models and derived coupling models are summarized, including the calculations of nucleation, growth kinetics, interface curvature, surface tension anisotropy and crystallographic orientation, thermal and solutal transport, melt convection utilizing the lattice Boltzmann method (LBM), the coupling of CA with control volume (CV) method, the coupling of CA with CALPHAD approach for multi-component alloy systems, as well as the approaches for eliminating the artificial anisotropy caused by the CA square cells. The main achievements in this field are addressed by presenting examples encompassing a wide variety of problems involving dendritic growth in pure diffusion and with melt convection, eutectic solidification, microstructure formation in multi-component alloys, dendritic growth with gas pore formation, and multi-scale simulation. Finally, the future prospects and challenges for the CA modeling of solidification microstructures are discussed.

Key wordsalloy    solidification    microstructure    numerical modeling    cellular automaton
收稿日期: 2016-08-05      出版日期: 2016-09-05
ZTFLH:     
基金资助:* 国家自然科学基金项目51371051和51501091, 中央高校基本科研业务费专项资金项目2242016K40008, 以及东南大学优秀博士论文培育基金YBJJ1627资助

引用本文:

朱鸣芳, 汤倩玉, 张庆宇, 潘诗琰, 孙东科. 合金凝固过程中显微组织演化的元胞自动机模拟*[J]. 金属学报, 2016, 52(10): 1297-1310.
Mingfang ZHU, Qianyu TANG, Qingyu ZHANG, Shiyan PAN, Dongke SUN. CELLULAR AUTOMATON MODELING OF MICRO-STRUCTURE EVOLUTION DURING ALLOY SOLIDIFICATION. Acta Metall, 2016, 52(10): 1297-1310.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2016.00361      或      http://www.ams.org.cn/CN/Y2016/V52/I10/1297

图1  在铸型壁和熔体内的形核分布
图2  CV网格节点和CA元胞的耦合示意图[14]
图3  模拟的Ni-0.4%Cu (质量分数)合金在1.5 K/s的冷速下等轴枝晶的演化
图4  模拟的Al-2.0%Mg-1.0%Si (质量分数)合金在纯扩散和强制对流下的柱状晶生长形貌
图5  模拟的初始成分C0=4.1%C (质量分数) 的亚共晶球墨铸铁凝固时的形貌演化
图6  模拟的Al-7%Si-1.5%Mg (质量分数)合金枝晶和共晶组织演化
图7  模拟的Al-7%Si (质量分数)合金中枝晶生长与H气孔形成的形貌演化
[1] Zhao J Z, Li L, Zhang X F.Acta Metall Sin, 2014; 50: 641
[1] (赵九洲, 李璐, 张显飞. 金属学报, 2014; 50: 641)
[2] Zhu M F, Pan S Y, Sun D K, Zhao H L.ISIJ Int, 2010; 50: 1851
[3] Rappaz M, Gandin C A.Acta Metall Mater, 1993; 41: 345
[4] Gandin C A, Rappaz M.Acta Metall Mater, 1994; 42: 2233
[5] Gandin C A, Desbiolles J L, Rappaz M, Thevoz P.Metall Mater Trans, 1999; 30A: 3153
[6] Lee K Y, Hong C P.ISIJ Int, 1997; 37: 38
[7] Cho I S, Hong C P.ISIJ Int, 1997; 37: 1098
[8] Chang Y H, Lee S M, Lee K Y, Hong C P.ISIJ Int, 1998; 38: 63
[9] Lee S Y, Lee S M, Hong C P.ISIJ Int, 2000; 40: 48
[10] Takatani H, Gandin C A, Rappaz M.Acta Mater, 2000; 48: 675
[11] Wu S P, Liu D R, Guo J J, Fu H Z.Trans Nonferrous Met Soc China, 2005; 15: 291
[12] Dilthey U, Pavlik V.In: Thomas B G, Beckermann C eds., Proc 8th Int Conf on Modeling of Casting Welding and Advanced Solidification, Warrendale: The Minerals Metals Materials Society, 1998: 589
[13] Nastac L.Acta Mater, l999; 47: 4253
[14] Zhu M F, Hong C P.ISIJ Int, 2001; 41: 436
[15] Zhu M F, Kim J M, Hong C P.ISIJ Int, 2001; 41: 992
[16] Shin Y H, Hong C P.ISIJ Int, 2002; 42: 359
[17] Xu Q Y, Feng W M, Liu B C, Xiong S M.Acta Metall Sin, 2002; 38: 799
[17] (许庆彦, 冯伟明, 柳百成, 熊守美. 金属学报, 2002; 38: 799)
[18] Wang W, Lee P D, McLean M.Acta Mater, 2003; 51: 2971
[19] Li Q, Li D Z, Qian B N.Acta Phys Sin, 2004; 53: 3477
[19] (李强, 李殿中, 钱百年. 物理学报, 2004; 53: 3477)
[20] Li Q, Li D Z, Qian B N.Acta Metall Sin, 2004; 40: 634
[20] (李强, 李殿中, 钱百年. 金属学报, 2004; 40: 634)
[21] Li Q, Li D Z, Qian B N.Acta Metall Sin, 2004; 40: 1215
[21] (李强, 李殿中, 钱百年. 金属学报, 2004; 40: 1215)
[22] Beltran-Sanchez L, Stefanescu D M.Metall Mater Trans, 2004; 35A: 2471
[23] Zhu M F, Chen J, Sun G X, Hong C P.Acta Metall Sin, 2005; 41: 583
[23] (朱鸣芳, 陈晋, 孙国雄, 洪俊杓. 金属学报, 2005; 41: 583)
[24] Yu J, Xu Q Y, Cui K, Liu B C.Acta Metall Sin, 2007; 43: 731
[24] (于靖, 许庆彦, 崔锴, 柳百成. 金属学报, 2007; 43: 731)
[25] Yin H, Felicelli S D.Acta Mater, 2010; 58: 1455
[26] Chen R, Xu Q Y, Liu B C.J Mater Sci Technol, 2014; 30: 1311
[27] Thevoz P, Desbioles J L, Rappaz M.Metall. Trans, 1989; 20A: 311
[28] Shan B W, Lin X, Wei L, Huang W D.Acta Phys Sin, 2009; 58: 1132
[28] (单博炜, 林鑫, 魏雷, 黄卫东. 物理学报, 2009; 58: 1132)
[29] Zhu M F, Stefanescu D M.Acta Mater, 2007; 55: 1741
[30] Wei L, Lin X, Wang M, Huang W D.Appl Phys, 2011; 103A: 123
[31] Trivedi R, Kurz W.Int Mater Rev, 1994; 39: 49
[32] Wei L, Lin X, Wang M, Huang W D.Acta Phys Sin, 2012; 61: 098104
[32] (魏雷, 林鑫, 王猛, 黄卫东. 物理学报, 2012; 61: 098104)
[33] Pan S Y.PhD Dissertation, Southeast University, Nanjing, 2013
[33] (潘诗琰. 东南大学博士学位论文, 南京, 2013)
[34] Dong H B, Lee P D.Acta Metall, 2005; 53: 659
[35] Guo Y G, Li S M, Liu L, Fu H Z.Acta Metall Sin, 2008; 44: 365
[35] (郭勇冠, 李双明, 刘林, 傅恒志. 金属学报, 2008; 44: 365)
[36] Shan B W, Huang W D, Lin X, Wei L.Acta Metall Sin, 2008; 44: 1042
[36] (单博炜, 黄卫东, 林鑫, 魏雷. 金属学报, 2008; 44: 1042)
[37] Zhang Y P, Lin X, Wei L, Wang M, Peng D J, Huang W D.Acta Phys Sin, 2012; 61: 228106
[37] (张云鹏, 林鑫, 魏雷, 王猛, 彭东剑, 黄卫东. 物理学报, 2012; 61: 228106)
[38] Shi Y F, Xu Q Y, Gong M, Liu B C.Acta Metall Sin, 2011; 47: 620
[38] (石玉峰, 许庆彦, 龚铭, 柳百成. 金属学报, 2011; 47: 620)
[39] Zhang H, Xu Q Y, Shi Z X, Liu B C.Acta Metall Sin, 2014; 50: 345
[39] (张航, 许庆彦, 史振学, 柳百成. 金属学报, 2014; 50: 345)
[40] Chen R, Xu Q Y, Liu B C.Acta Phys Sin, 2014; 63: 188102
[40] (陈瑞, 许庆彦, 柳百成. 物理学报, 2014; 63: 188102)
[41] Zhang Y P, Lin X, Wei L, Peng D J, Wang M, Huang W D.Acta Phys Sin, 2013; 62: 178105
[41] (张云鹏, 林鑫, 魏雷, 彭东剑, 王猛, 黄卫东. 物理学报, 2013; 62: 178105)
[42] Wei L, Lin X, Wang M, Huang W D.Chin Phys, 2015; 24B: 078108
[43] Pan S Y, Zhu M F.Acta Metall, 2010; 58: 340
[44] Jiang H X, Zhao J Z.Acta Metall Sin, 2011; 47: 1099
[44] (江鸿翔, 赵九洲. 金属学报, 2011; 47: 1099)
[45] Wei L, Lin X, Wang M, Huang W D.Physica, 2012; 407B: 2471
[46] Shi Y F, Xu Q Y, Liu B C.Trans Nonferrous Met Soc China, 2012; 22: 2756
[47] Fu Z N, Xu Q Y, Xiong S M.Chin J Nonferrous Met, 2007; 17: 1567
[47] (付振南, 许庆彦, 熊守美. 中国有色金属学报, 2007; 17: 1567)
[48] Huo L, Han Z Q, Liu B C.Acta Metall Sin, 2009; 45: 1414
[48] (霍亮, 韩志强, 柳百成. 金属学报, 2009; 45: 1414)
[49] Wu M W, Xiong S M.Acta Metall Sin, 2010; 46: 1534
[49] (吴孟武, 熊守美. 金属学报, 2010; 46: 1534)
[50] Wu M W, Xiong S M.Acta Metall Sin, 2012; 25: 169
[50] (吴孟武, 熊守美. 金属学报, 2012; 25: 169)
[51] Trivedi R, Miyahara H, Mazumder P, Simsek E, Tewari S N.J Cryst Growth, 2001; 222: 365
[52] Zhu M F, Lee S Y, Hong C P.Phys Rev, 2004; 69E: 061610
[53] Zhu M F, Dai T, Lee S Y, Hong C P.Sci China, 2005; 48E: 241
[54] Zhu M F, Dai T, Lee S Y, Hong C P.Comput Math Appl, 2008; 55: 1620
[55] Yuan L, Lee P D.Model Simul Mater Sci Eng, 2010; 18: 055008
[56] Dong Z B, Wang S J, Ma R, Wei Y H, Song K J, Zhai G F.J Mater Sci Technol, 2011; 27: 183
[57] Shi Y F, Xu Q Y, Liu B C.Acta Phys Sin, 2011; 60: 126101
[57] (石玉峰, 许庆彦, 柳百成. 物理学报, 2011; 60: 126101)
[58] Wang W L, Luo S, Zhu M Y.Comp Mater Sci, 2014; 95: 136
[59] Zhang X F, Zhao J Z.Acta Metall Sin, 2012; 48: 615
[59] (张显飞, 赵九洲. 金属学报, 2012; 48: 615)
[60] Karagadde S, Yuan L, Shevchenko N, Eckert D S, Lee P D.Acta Mater, 2014; 79: 168
[61] Yang M H, Guo Z P, Xiong S M.Chin J Nonferrous Met, 2015; 25: 835
[61] (杨满红, 郭志鹏, 熊守美. 中国有色金属学报, 2015; 25: 835)
[62] Qian Y H, D'Humieres D, Lallemand P.Europhys Lett, 1992; 17: 479
[63] Sun D K, Zhu M F, Pan S Y, Raabe D.Acta Mater, 2009; 57: 1755
[64] Sun D K, Zhu M F, Pan S Y, Yang C R, Raabe D.Comput Math Appl, 2011; 61: 3585
[65] Yang Z R, Sun D K, Pan S Y, Dai T, Zhu M F.Acta Metall Sin, 2009; 45: 43
[65] (杨朝蓉, 孙东科, 潘诗琰, 戴挺, 朱鸣芳. 金属学报, 2009; 45: 43)
[66] Zhu M F, Sun D K, Pan S Y, Zhang Q Y, Raabe D.Modell Simul Mater Sci Eng, 2014; 22: 034006
[67] Yin H, Felicelli S D, Wang L.Acta Mater, 2011; 59: 3124
[68] Sun D K, Zhu M F, Dai T, Cao W S, Chen S L, Raabe D, Hong C P.Int J Cast Met Res, 2011; 24: 177
[69] Sun D K, Zhang Q Y, Cao W S, Zhu M F.Chin Phys Lett, 2015; 32: 068103
[70] Sun D K.PhD Dissertation, Southeast University, Nanjing, 2010
[70] (孙东科. 东南大学博士学位论文, 南京, 2010)
[71] Jarvis D J, Brown S G R.Mater Sci Technol, 2000; 16: 1420
[72] Zhu M F, Hong C P.Phys Rev, 2002; 66B: 155428
[73] Zhu M F, Hong C P.Metall Mater Trans, 2004; 35A: 1555
[74] Chen R, Xu Q Y, Liu B C.China Foundry, 2016; 13: 114
[75] Wu M W, Xiong S M.Acta Phys Sin, 2011; 60: 058103
[75] (吴孟武, 熊守美. 物理学报, 2011; 60: 058103)
[76] Himemiya T.Mater Trans, 2012; 53: 1652
[77] Shi Y F, Xu Q Y, Liu B C.Acta Metall Sin, 2012; 48: 41
[77] (石玉峰, 徐庆彦, 柳百成. 金属学报, 2012; 48: 41)
[78] Charbon C, Rappaz M.In: Lesoult G, Lacaze J eds., Proc 5th Int Conf on Physical Metallurgy of Cast Iron, Switzerland: Scitec Publications, 1997: 453
[79] Ruxanda R, Beltran-Sanchez L, Massone J, Stefanescu D M.AFS Trans, 2001; 109: 1037
[80] Gurgul D, Burbelko A.Arch Metall Mater, 2010; 55: 53
[81] Burbelko A, Fras E, Gurgul D, Kapturkiewicz W, Sikora J.Key Eng Mater, 2011; 457: 330
[82] Burbelko A A, Gurgul D, Kapturkiewic W, Górny M.Mater Sci Eng, 2012; 33: 012083
[83] Zhao H L, Zhu M F, Stefanescu D M.Key Eng Mater, 2011; 457: 324
[84] Zhang L, Zhao H L, Zhu M F.Acta Metall Sin, 2015; 51: 48
[84] (张蕾, 赵红蕾, 朱鸣芳. 金属学报, 2015; 51: 48)
[85] Zhu M F, Zhang L, Zhao H L, Stefanescu D M.Acta Mater, 2015; 84: 413
[86] Zhu M F, Cao W, Chen S L, Hong C P, Chang Y A.J Phase Equilib Diffus, 2007; 28: 130
[87] Dai T, Zhu M F, Chen S L, Cao W S, Hong C P.Acta Metall Sin, 2008; 10: 1175
[87] (戴挺, 朱鸣芳, 陈双林, 曹伟生, 洪俊杓. 金属学报, 2008; 10: 1175)
[88] Shi Y F, Xu Q Y, Liu B C.Acta Phys Sin, 2012; 61: 108101
[88] (石玉峰, 许庆彦, 柳百成. 物理学报, 2012; 61: 108101)
[89] Zhang X F, Zhao J Z, Jiang H X, Zhu M F.Acta Mater, 2012; 60: 2249
[90] Zhang X F, Zhao J Z.J Cryst Growth, 2014; 391: 52
[91] Chen R, Xu Q Y, Wu Q F, Guo H T, Liu B C.Acta Metall Sin, 2015; 51: 733
[91] (陈瑞, 许庆彦, 吴勤芳, 郭会廷, 柳百成. 金属学报, 2015; 51: 733)
[92] Chen R, Xu Q Y, Liu B C.Acta Metall Sin, 2015; 28: 173
[92] (陈瑞, 许庆彦, 柳百成. 金属学报, 2015; 28: 173)
[93] Zhao Y, Qin R S, Chen D F.J Cryst Growth, 2013; 377: 72
[94] Wang T T.Master Thesis, Southeast University, Nanjing, 2016
[94] (王韬涛. 东南大学硕士学位论文, 南京, 2016)
[95] Atwood R C, Lee P D.Acta Mater, 2003; 51: 5447
[96] Lee P D, Chirazi A, Atwood R C, Wang W.Mater Sci Eng, 2004; A365: 57
[97] Dong S Y, Xiong S M, Liu B C.J Mater Sci Technol, 2004; 20: 23
[98] Hang Z Q, Li J X, Yang W, Zhao H D, Liu B C.Acta Metall Sin, 2011; 47: 7
[98] (韩志强, 李金玺, 杨文, 赵海东, 柳百成. 金属学报, 2011; 47: 7)
[99] Sasikumar R, Walker M J, Savithri S, Sundarraj S.Modell Simul Mater Sci Eng, 2008; 16: 035009
[100] Li Z Y, Zhu M F, Dai T.Acta Metall Sin, 2013; 49: 1032
[100] (李正扬, 朱鸣芳, 戴挺. 金属学报, 2013; 49: 1032)
[101] Zhu M F, Li Z Y, An D, Zhang Q Y, Dai T.ISIJ Int, 2014; 54: 384
[102] Wang T T, An D, Zhang Q Y, Dai T, Zhu M F.IOP Conf Ser Mater Sci Eng, 2015; 84: 012046
[103] Wu W, Sun D K, Dai T, Zhu M F.Acta Phys Sin, 2012; 61: 150501
[103] (吴伟, 孙东科, 戴挺, 朱鸣芳. 物理学报, 2012; 61: 150501)
[104] Wu W, Zhu M F, Sun D K, Dai T, Han Q Y, Raabe D.IOP Conf Ser Mater Sci Eng, 2012; 33: 012103
[105] Chen H N, Sun D K, Dai T, Zhu M F.Acta Phys Sin, 2013; 63: 150502
[105] (陈海楠, 孙东科, 戴挺, 朱鸣芳. 物理学报, 2013; 63: 150502)
[106] Sun D K, Zhu M F, Wang J, Baode S.Int J Heat Mass Trans, 2016; 94: 474
[107] Liu D R, Mangelinck-No?l N, Gandin C A, Zimmermann L G, Sturz L, Nguyen-Thi H, Billia B.Acta Mater, 2015; 93: 24
[108] Li D Z, Du Q, Hu Z Y, Li Y Y.Acta Metall Sin, 1999; 35: 1201
[108] (李殿中, 杜强, 胡志勇, 李依依. 金属学报, 1999; 35: 1201)
[109] Kang X H, Du Q, Li D Z, Li Y Y.Acta Metall Sin, 2004; 40: 452
[109] (康秀红, 杜强, 李殿中, 李依依. 金属学报, 2004; 40: 452)
[110] Xu Q Y, Liu B C.Mater Trans, 2001; 42: 2316
[111] Feng W M, Xu Q Y, Liu B C.ISIJ Int, 2002; 42: 702
[112] Liu B C, Xu Q Y, Jing T, Shen H F, Han Z Q.JOM, 2011; 63(4): 19
[113] Meng X B, Li J G, Jin T, Sun X F, Sun C B, Hu Z Q.J Mater Sci Technol, 2011; 27: 118
[114] Pan D, Xu Q Y, Yu J, Liu B C, Li J R, Yuan H L, Jin H P.Int J Cast Metal Res, 2008; 21: 308
[115] Pan D, Xu Q Y, Liu B C, Yuan H L, Jin H P.JOM, 2010; 62(5): 30
[116] Pan D, Xu Q Y, Liu B C.Sci China, 2011; 54G: 851
[117] Zhang H, Xu Q Y, Tang N, Pan D, Liu B C.Sci China, 2011; 54E: 3191
[118] Yan X W, Tang N, Liu X F, Shui G Y, Xu Q Y, Liu B C.Acta Metall Sin, 2015; 10: 1288
[118] (闫学伟, 唐宁, 刘孝福, 税国彦, 许庆彦, 柳百成. 金属学报, 2015; 10: 1288)
[119] Li B K, Wang F, Zhang H, Chen M Q.J Iron Steel Res Int, 2011; 52: 159
[120] Li B K, Wang Q, Wang F, Chen M Q.JOM, 2014; 66(7): 1153
[121] Han R H, Dong W C, Lu S P, Li D Z, Li Y Y.Acta Phys Sin, 2014; 63: 228103
[121] (韩日宏, 董文超, 陆善平, 李殿中, 李依依. 物理学报, 2014; 63: 228103)
[122] Wei L, Lin X, Wang M, Huang W D.Acta Phys Sin, 2015; 64: 018103
[122] (魏雷, 林鑫, 王猛, 黄卫东. 物理学报, 2015; 64: 018103)
[123] Luo S, Zhu M Y, Louhenkilpi S.ISIJ Int, 2012; 52: 823
[124] Sun T, Yue F, Wu H J, Guo C, Li Y, Ma Z C.J Iron Steel Res Int, 2016; 23: 329
[125] Liu D R, Wu S P, Guo J J, Su Y Q, Fu H Z.Acta Metall Sin, 2006; 42: 437
[125] (刘东戎, 吴士平, 郭景杰, 苏彦庆, 傅恒志. 金属学报, 2006; 42: 437)
[126] Liu D R, Reinhart G, Mangelinck-No?l N, Gandin C A, Nguyen-Thi H, Billia B.ISIJ Int, 2014; 54: 392
[1] 李芸, 刘连杰, 李新明, 李金富. 过冷Co75B25合金的凝固[J]. 金属学报, 2018, 54(8): 1165-1170.
[2] 王帅鹏, 罗文华, 李赣, 李海波, 张广丰. La含量对Ce-La合金氢化动力学的影响[J]. 金属学报, 2018, 54(8): 1187-1192.
[3] 贺志荣, 吴佩泽, 刘康凯, 冯辉, 杜雨青, 冀荣耀. 激冷Ti-47Ni合金薄带的组织、相变和形状记忆行为[J]. 金属学报, 2018, 54(8): 1157-1164.
[4] 刘金辉, 宋影伟, 单大勇, 韩恩厚. 铸态和锻造态Mg-5Y-7Gd-1Nd-0.5Zr合金腐蚀行为对比研究[J]. 金属学报, 2018, 54(8): 1141-1149.
[5] 徐士新, 余伟, 李舒笳, 王坤, 孙齐松. 预变形温度对纳米贝氏体相变动力学及组织的影响[J]. 金属学报, 2018, 54(8): 1113-1121.
[6] 王光东, 田妮, 何长树, 赵刚, 左良. DC铸造Al-12Si-0.65Mg-xMn合金中第二相的形成[J]. 金属学报, 2018, 54(7): 1059-1067.
[7] 张建锋, 蓝青, 乐启炽. 交流磁场致Al-Fe亚共晶合金熔体热电势变化的研究[J]. 金属学报, 2018, 54(7): 1042-1050.
[8] 高飘, 魏恺文, 喻寒琛, 杨晶晶, 王泽敏, 曾晓雁. 分层厚度对选区激光熔化成形Ti-5Al-2.5Sn合金组织与性能的影响规律[J]. 金属学报, 2018, 54(7): 999-1009.
[9] 马政, 陆喜, 高明, 谭丽丽, 杨柯. 缝隙腐蚀对Fe-30Mn-1C合金降解速率的影响[J]. 金属学报, 2018, 54(7): 1010-1018.
[10] 范丽, 陈海龑, 董耀华, 李雪莹, 董丽华, 尹衍升. 激光熔覆铁基合金涂层在HCl溶液中的腐蚀行为[J]. 金属学报, 2018, 54(7): 1019-1030.
[11] 帅三三, 林鑫, 肖武泉, 余建波, 王江, 任忠鸣. 横向静磁场对激光熔化增材制造Al-12%Si合金凝固组织的影响[J]. 金属学报, 2018, 54(6): 918-926.
[12] 于晓明, 谭丽丽, 刘宗元, 杨柯, 朱忠林, 李扬德. Ti6Al4V表面生物功能纯Mg薄膜制备及性能研究[J]. 金属学报, 2018, 54(6): 943-949.
[13] 李淑波, 杜文博, 王旭东, 刘轲, 王朝辉. Zr对Mg-Gd-Er合金晶粒细化机理的影响[J]. 金属学报, 2018, 54(6): 911-917.
[14] 刘晏宇, 毛萍莉, 刘正, 王峰, 王志. Schmid因子的理论计算及其在镁合金高速变形过程中的应用[J]. 金属学报, 2018, 54(6): 950-958.
[15] 刘廷光, 夏爽, 白琴, 周邦新. 316L不锈钢的三维晶粒与晶界形貌特征及尺寸分布[J]. 金属学报, 2018, 54(6): 868-876.