Please wait a minute...
金属学报  2016, Vol. 52 Issue (10): 1239-1248    DOI: 10.11900/0412.1961.2016.00360
  本期目录 | 过刊浏览 |
介质阻挡放电等离子体辅助球磨及其在材料制备中的应用*
朱敏1,2(),鲁忠臣2,3,胡仁宗1,2,欧阳柳章1,2
1 华南理工大学材料科学与工程学院, 广州 510640
2 华南理工大学广东省先进储能材料重点实验室, 广州 510640
3 华南理工大学机械与汽车工程学院, 广州 510640
DIELECTRIC BARRIER DISCHARGE PLASMA ASSISTED BALL MILLING TECHNOLOGY AND ITS APPLICATIONS IN MATERIALS FABRICATION
Min ZHU1,2(),Zhongchen LU2,3,Renzong HU1,2,Liuzhang OUYANG1,2
1 School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
2 Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, South China University of Technology, Guangzhou 510640, China
3 School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
全文: PDF(4738 KB)   HTML
  
摘要: 

简述了外场辅助球磨技术的发展及其在材料制备中的应用. 介绍了近年来发展的介质阻挡放电等离子体(DBDP)辅助球磨新技术的基本原理和方法, 阐述了DBDP辅助球磨利用等离子体的热效应、高能电子轰击效应和球磨机械力效应的协同作用, 增强粉体在球磨过程中的组织细化、活性激活、化学反应等效果和机理. 在此基础上, 简要介绍了该方法在硬质合金、锂离子电池负极材料、储氢材料等制备中的应用. 研究结果表明, 采用DBDP辅助球磨制备上述材料, 不仅极大提高了球磨方法制备材料的效率, 而且通过形成独特的结构显著提高了材料的性能; 此外, 还有可能建立新的材料生产制备工艺. 已取得的研究结果表明, DBDP辅助球磨技术在粉末材料细化、材料表面改性、机械合金化、复合材料制备和气固反应等方面具有巨大的潜力.

关键词 机械合金化等离子体外场辅助球磨硬质合金锂离子电池材料储氢材料    
Abstract

The development of external field assisted milling technologies and their application in materials fabrication have been briefly described. A recent developed milling method named as dielectric barrier discharge plasma assisted ball milling (DBDP-milling) was introduced. A combination of heating effect and high energy electron bombardment effect produced by plasma, as well as the milling mechanical effect was induced simultaneously in the DBDP-milling, which can effectively promote the powder refinement, activation and chemical reaction. On this basis, the DBDP-milling method was applied in the fabrication of cemented carbide, anode materials for lithium ion batteries, hydrogen storage materials, and so on. The studies have indicated that DBDP-milling could improve the efficiency of mill, produce unique structure and thus enhanced properties. In addition, DBDP-milling is also possible to establish a new material production process. Research results have demonstrated that the DBDP-milling method has a great potential in refinement, surface modification, mechanical alloying, composite fabrication and gas-solid reaction of powder materials for different applications.

Key wordsmechanical alloying    plasma    external field assisted mill    cemented carbide    anode material for lithium ion battery    hydrogen storage material
收稿日期: 2016-08-03      出版日期: 2016-08-30
:     
基金资助:* 国家自然科学基金项目51231003, 国家重点基础研究发展计划项目2010CB631300, 国家自然科学基金创新群体项目NSFC51621001, 广东省自然科学基金项目05200618和广东省实验室体系建设项目2012A061400002资助

引用本文:

朱敏, 鲁忠臣, 胡仁宗, 欧阳柳章. 介质阻挡放电等离子体辅助球磨及其在材料制备中的应用*[J]. 金属学报, 2016, 52(10): 1239-1248.
Min ZHU, Zhongchen LU, Renzong HU, Liuzhang OUYANG. DIELECTRIC BARRIER DISCHARGE PLASMA ASSISTED BALL MILLING TECHNOLOGY AND ITS APPLICATIONS IN MATERIALS FABRICATION. Acta Metall Sin, 2016, 52(10): 1239-1248.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2016.00360      或      http://www.ams.org.cn/CN/Y2016/V52/I10/1239

图1  放电辅助高能球磨示意图[11]
图2  介质阻挡放电等离子体(DBDP)辅助球磨室内放电球磨示意图
图3  普通球磨和DBDP辅助球磨Al粉末的SEM像[24]
图4  普通球磨和DBDP辅助球磨的TiO2粉末的SEM像[24]
图5  普通球磨和DBDP辅助球磨3 h后的W-C混合粉末的DSC曲线[25]
图6  DBDP辅助球磨3 h后粉末及块体表面形貌[32,35]
图7  DBD氧等离子辅助球磨Sn-C复合材料的微观结构和性能[39]
图8  DBDP辅助球磨制备MgInAlTi体系储氢合金原理示意图[48]
[1] Benjamin J S.Metall Trans, 1970; 1: 2943
[2] Koch C C.Nanostruct Mater, 1993; 2: 109
[3] Dai L Y, Chen Q L, Lin S F, Ouyang L Z.Mater Rev, 2009; 23(2): 59
[3] (戴乐阳, 陈清林, 林少芬, 欧阳柳章. 材料导报, 2009; 23(2): 59)
[4] Dai L Y, Zeng M Q, Tong Y Q, Ouyang L Z, Zhu M, Li Y Y.J Funct Mater, 2005; 36: 1158
[4] (戴乐阳, 曾美琴, 童燕青, 欧阳柳章, 朱敏, 李元元. 功能材料, 2005; 36: 1158)
[5] Mordyuk B N, Prokopenko G I.Ultrasonics, 2004; 42: 43
[6] Calka A, Radlinski A P.Mater Sci Eng, 1991; A134: 1350
[7] Wang D P, Li X D, Chang Y, Qi M.J Rare Earth (Engl Lett), 2013; 31: 366
[8] Chelvane J A, Palit M, Basumatary H, Pandian S.J Magn Magn Mater, 2013; 343: 144
[9] Luton M J, Jayanth C S, Disko M M, Matrasa1 S, Vallon J. In: Kear B H, McCandlish L E, Polk D E, Siegel R W eds., MRS Proceedings, Cambridge University Press, 1988; 132: 79
[10] Chung K H, He J H, Shin D H.Mater Sci Eng, 2003; A356: 23
[11] Calka A, Wexler D.Nature, 2002; 419: 147
[12] Calka A, Wexler D.J Metastable Nanocryst Mater, 2004; 20: 111
[13] Mosbah A, Calka A, Wexler D.J Alloys Compd, 2006; 424: 279
[14] Varin R A, Chiu C, Li S, Calka A, Wexler D.J Alloys Compd, 2004; 370: 230
[15] Calka A, Mosbah A, Stanford N, Balaz P.J Alloys Compd, 2008; 455: 285
[16] Needham S A, Calka A, Wang G X, Mosbah A, Liu H K.Electochem Commun, 2006; 8: 434
[17] Yuan Q, Zheng Y, Yu H.Int J Refract Met Hard Mater, 2009; 27: 121
[18] Quan Y, Zheng Y, Yu H Z.Trans Nonferrous Met Soc China, 2011; 21: 1545
[19] Zhu M, Dai L Y, Cao B, Zeng M Q, Ouyang L Z, Tong Y Q, Li B.China Patent, ZL200510036231, 2007)
[19] (朱敏, 戴乐阳, 曹彪, 曾美琴, 欧阳柳章, 童燕青, 李北. 中国专利, ZL200510036231, 2007)
[20] Wang X X.High Volt Eng, 2009; 35(1): 1
[20] (王新新. 高电压技术, 2009; 35(1): 1)
[21] Yang X P, Dai L Y, Zeng M Q, Ouyang L Z.Mater Rev, 2010; 24: 320
[21] (杨小平, 戴乐阳, 曾美琴, 欧阳柳章. 材料导报, 2010; 24: 320)
[22] Sun Q D.Master Thesis, Tianjin University, 2013
[22] (孙启迪. 天津大学硕士学位论文, 2013)
[23] Dai L Y, Lin S F, Chen Q L, Yang X P.Mod Manuf Eng, 2010; 5(5): 48
[23] (戴乐阳, 林少芬, 陈清林, 杨小平. 现代制造工程, 2010; 5(5): 48)
[24] Dai L Y.PhD Dissertation, South China University of Technology, Guangzhou, 2006
[24] (戴乐阳, 华南理工大学博士学位论文, 广州, 2006)
[25] Zhu M, Dai L Y, Gu N S, Cao B, Ouyang L Z.J Alloys Compd, 2009; 478: 624
[26] Dai L Y.Acta Metall Sin (Engl Lett), 2013; 26: 63
[27] Dai L Y, Cao B, Zhu M.Acta Metall Sin (Engl Lett), 2006; 19: 411
[28] Conrad H, Yang D.Acta Mater, 2002; 50: 2851
[29] Chen Z H.Master Thesis, South China University of Technology, Guangzhou, 2015
[29] (陈志鸿. 华南理工大学硕士学位论文, 广州, 2015)
[30] Jia C X, Chen P, Wang Q, Wang J, Ren R.Chin J Mater Res, 2015; 29: 10
[30] (贾彩霞, 陈平, 王乾, 王静, 任荣. 材料研究学报, 2015; 29: 10)
[31] Meng R G.Master Thesis, Jimei University, Xiamen, 2013
[31] (孟荣刚. 集美大学硕士学位论文, 厦门, 2013)
[32] Yang X P.Master Thesis, South China University of Technology, Guangzhou, 2010
[32] (杨小平. 华南理工大学硕士学位论文, 广州, 2010)
[33] Dai L Y, Lin S F, Chen J F, Zeng M Q, Zhu M.Int J Refract Met Hard Mater, 2012; 30: 48
[34] Zhu M, Bao X Y, Yang X P, Gu N S, Wang H, Zeng M Q, Dai L Y.Metall Mater Trans, 2011; 42: 2930
[35] Wang W, Lu Z C, Chen Z H, Zeng M Q, Wang H, Zhu M.J Rare Earth (Engl Lett), DOI: 10.1007/S12598-016-0769-5
[36] Hu R Z, Yang L C, Zhu M.Chin Sci Bull (Chin Ver), 2013; 58: 3140
[36] (胡仁宗, 杨黎春, 朱敏. 科学通报(中文版), 2013; 58: 3140)
[37] Hu R Z.PhD Dissertation, South China University of Technology, Guangzhou, 2011
[37] (胡仁宗. 华南理工大学博士学位论文, 广州, 2011)
[38] Liu H, Hu R, Zeng M, Liu J W, Zhu M.J Mater Chem, 2012; 22A: 8022
[39] Hui L, Hu R Z, Sun W, Zeng M Q, Yang L C, Liu J W, Zhu M,J Power Sources, 2013; 242: 114
[40] Zhang H Y, Hu R Z, Liu H, Sun W, Lu Z C, Liu J W, Yang L C, Zhang Y, Zhu M.J Mater Chem, 2016; 4A: 10321
[41] W. Sun, R.Z.Hu, H. Liu, M. Q. Zeng, M. Zhu.J Power Sources, 2014; 268:610
[42] Ouyang L Z, Guo L N, Cai W H, Ye J S, Hu R Z, Liu J W, Yang LC, Zhu M.J Mater Chem A, 2014; 2A: 11280
[43] Wang Y K, Yang L C, Hu R Z, Sun W, Liu J W, Ouyang L Z, Yuan B, Wang H, Zhu M.J Power Sources, 2015; 288: 314
[44] Zaluska A, Zaluski L, Str?m-Olsen J O.J Alloys Compd, 1999; 288: 217
[45] Huot J, Tremblay M L, Schulz R.J Alloys Compd, 2003; 356: 603
[46] Lu Y S, Zhu M, Wang H, Li Z M, Ouyang L Z, Liu J W.Int J Hydrogen Energy, 2014; 39: 14033
[47] Ouyang L Z, Cao Z J, Wang H, Liu J W, Sun D L, Zhang Q A, Zhu M.J Alloys Compd, 2014; 586: 113
[48] Cao Z J, Ouyang L Z, Wu Y, Wang H, Liu J W, Fang F, Sun D L, Zhang Q A, Zhu M.Dual-tuning effects of In, Al, and Ti on the thermodynamics and kinetics of Mg85In5Al5Ti5 alloy synthesized by plasma milling.J Alloys Compd, 2015; 623: 354
[49] Ouyang L Z, Cao Z J, Li L L, Wang H, Liu J W, Min D, Chen Y W, Xiao F M, Tang R H, Zhu M.Int J Hydrogen Energy, 2014; 39: 12765
[50] Dai L Y, Zhang B J, Lin S F, Liu Z J, Wang W C.Chin J Nonferrous Met, 2015; 1: 171
[50] (戴乐阳, 张宝剑, 林少芬, 刘志杰, 王文春. 中国有色金属学报, 2015; 1: 171)
[1] 吴玉程. 核聚变堆用W及其合金辐照损伤行为研究进展[J]. 金属学报, 2019, 55(8): 939-950.
[2] 吴玉程. 面向等离子体W材料改善韧性的方法与机制[J]. 金属学报, 2019, 55(2): 171-180.
[3] 周洪波, 李宇浩, 吕广宏. W中H行为的计算模拟研究[J]. 金属学报, 2018, 54(2): 301-313.
[4] 夏超, 钱仕, 王东辉, 刘宣勇. 碳离子注入医用Ti性能研究[J]. 金属学报, 2017, 53(10): 1393-1401.
[5] 胡娜, 薛丽红, 顾健, 李和平, 严有为. 磨球级配对MA-SPS原位合成Al13Fe4/Al复合材料的组织结构及力学性能的优化*[J]. 金属学报, 2015, 51(2): 216-222.
[6] 王瑶, 刘雪梅, 宋晓艳, 魏崇斌, 王海滨, 王西龙. 高性能再生硬质合金的短流程回收制备*[J]. 金属学报, 2014, 50(5): 633-640.
[7] 乐国敏,Godfrey Andrew,刘伟. 烧结细晶Al的微观组织与力学性能研究[J]. 金属学报, 2013, 49(8): 939-945.
[8] 顾健,古飒飒,薛丽红,吴树森,严有为. 机械合金化和放电等离子烧结制备Al-Fe合金的微观组织演变[J]. 金属学报, 2013, 29(4): 435-442.
[9] 王曼,周张健,闫志刚,于鹏飞,孙红英. ODS-316奥氏体钢显微结构及弥散相的TEM研究[J]. 金属学报, 2013, 49(2): 153-158.
[10] 吕铮,卢晨阳,张守辉,谢锐,刘春明. 纳米结构14Cr-ODS铁素体钢的制备与微观结构[J]. 金属学报, 2012, 48(6): 649-653.
[11] 赵世贤 宋晓艳 刘雪梅 魏崇斌 王海滨 高杨. 超细晶硬质合金显微组织参数与力学性能定量关系的研究[J]. 金属学报, 2011, 47(9): 1188-1194.
[12] 张锋刚 朱小鹏 王明阳 雷明凯. 强流脉冲离子束辐照WC-Ni硬质密封材料表面改性研究[J]. 金属学报, 2011, 47(7): 958-964.
[13] 雷明凯 王克胜 欧伊翔 张磊. 泵阀用2Cr13马氏体不锈钢等离子体基低能氮离子注入研究[J]. 金属学报, 2011, 47(12): 1490-1494.
[14] 张伟彬 沙春生 杜勇 温光华 谢文 王社权. 梯度硬质合金梯度层形成的计算机模拟及验证[J]. 金属学报, 2011, 47(10): 1307-1314.
[15] 于军; 葛昌纯; 孟璐璐; 沈卫平; 燕青芝; 孟月东 . 火花等离子体放电制备高温合金细粉新技术[J]. 金属学报, 2008, 44(7): 892-896 .