Please wait a minute...
金属学报  2017, Vol. 53 Issue (2): 239-247    DOI: 10.11900/0412.1961.2016.00356
  本期目录 | 过刊浏览 |
热处理对连续点式锻压激光快速成形GH4169合金组织与拉伸性能的影响
席明哲(),周玮,尚俊英,吕超,吴贞号,高士友
燕山大学先进锻压成形技术与科学教育部重点实验室 秦皇岛 066004
Effect of Heat Treatment on Microstructure and Mechanical Properties of Consecutive Point-Mode Forging and Laser Rapid Forming GH4169 Alloy
Mingzhe XI(),Wei ZHOU,Junying SHANG,Chao LV,Zhenhao WU,Shiyou GAO
Key Laboratory of Advanced Forging & Stamping Technology and Science, Ministry of Education, Yanshan University, Qinhuangdao 066004, China
全文: PDF(8104 KB)   HTML  
摘要: 

研究了热处理对连续点式锻压激光快速成形GH4169合金显微组织和拉伸性能的影响。结果表明,980STA热处理未能使连续点式锻压激光快速成形GH4169合金发生再结晶,合金的拉伸性能达不到锻件标准。经1020STA热处理后,合金发生完全再结晶,等轴晶晶粒尺寸分布均匀,平均晶粒尺寸约为12.8 μm,Laves相未被完全固溶,合金的强度和塑性超过锻件标准。1050STA热处理合金的再结晶平均晶粒尺寸约为25.3 μm,Laves相完全固溶消失,与1020STA热处理合金相比,合金的强度下降而塑性上升,强度和塑性超过锻件标准。经1080STA热处理后,合金再结晶晶粒尺寸分布不均匀程度明显增大,平均晶粒尺寸约为123.6 μm,与1020STA和1050STA热处理合金相比,合金的强度和塑性都大幅度下降,仅与锻件标准相当。

关键词 连续点式锻压激光快速成形GH4169显微组织拉伸性能    
Abstract

To transform the columnar grain in the as-deposited GH4169 alloy to the exquiaxed grain and get better mechanical properties, a block sample of GH4169 alloy has been formed by using a technology of consecutive point-mode forging and laser rapid forming (CPF-LRF). During the process of CPF-LRF, GH4169 alloy was deposited by laser rapid forming firstly and then the deposited GH4169 alloy was deformed by consecutive point-mode forging. Both consecutive point-mode forging and laser rapid forming were alternately carried out until the completion of the forming of an objective part. The effects of heat treatment on the microstructures and mechanical properties of CPF-LRF GH4169 alloy have been investigated. The result shows that 980STA heat treatment fails to lead to recrystallization of CPF-LRF GH4169 alloy, and the tensile properties of 980STAed CPF-LRF GH4169 alloy can't meet the wrought standards. After the 1020STA heat treatment, the average recrystal grain size of GH4169 alloy is about 12.8 μm, and Laves phase can not be dissolved completely. The tensile properties of the 1020STAed CPF-LRF GH4169 alloy is superior to the wrought standards. Compared to the 1020STAed CPF-LRF GH4169 alloy, the tensile strength of 1050STAed CPF-LRF GH4169 alloy drops and its ductility increases due to complete dissolution of Laves phase and grain size increasing to 25.3 μm. The average grain size of the 1080STAed CPF-LRF GH4169 alloy is about 123.6 μm. Compared to 1020STAed and 1050STAed CPF-LRF GH4169, the tensile properties of 1080STAed CPF-LRF GH4169 has fallen substantially, which just satisfy the wrought standards.

Key wordsconsecutive point-mode forging    laser rapid forming    GH4169 alloy    microstructure    tensile property
收稿日期: 2016-08-02      出版日期: 2016-12-13
基金资助:国家自然科学基金项目Nos.51375426和51375425

引用本文:

席明哲,周玮,尚俊英,吕超,吴贞号,高士友. 热处理对连续点式锻压激光快速成形GH4169合金组织与拉伸性能的影响[J]. 金属学报, 2017, 53(2): 239-247.
Mingzhe XI,Wei ZHOU,Junying SHANG,Chao LV,Zhenhao WU,Shiyou GAO. Effect of Heat Treatment on Microstructure and Mechanical Properties of Consecutive Point-Mode Forging and Laser Rapid Forming GH4169 Alloy. Acta Metall, 2017, 53(2): 239-247.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2016.00356      或      http://www.ams.org.cn/CN/Y2017/V53/I2/239

Powder Fe Cr Ti Al Mo Nb C Ni
GH4169 18.4 19.7 1.04 0.64 3.0 5.17 0.33 Bal.
AMS:5663 16~20 17~21 0.65~1.15 0.1~0.8 2.8~3.3 4.75~5.5 0.08Max Bal.
表1  GH4169粉末的化学成分
Designation Heat treatment
980STA 980 ℃, 1 h, AC+720 ℃, 8 h 2 h620 ℃, 8 h, AC
1020STA 1020 ℃, 1 h, AC+980 ℃, 1 h, AC+720 ℃, 8 h2 h620 ℃, 8 h, AC
1050STA 1050 ℃, 1 h, AC+980 ℃, 1 h, AC+720 ℃, 8 h2 h620 ℃, 8 h, AC
1080STA 1080 ℃, 1 h, AC+980 ℃, 1 h, AC+720 ℃, 8 h2 h620 ℃, 8 h, AC
表2  连续点式锻压激光快速成形GH4169合金热处理工艺
图1  连续点式锻压激光快速成形技术过程示意图
图2  经980STA热处理后,连续点式锻压激光快速成形GH4169合金的显微组织和EDS分析
图3  经1020STA热处理后,连续点式锻压激光快速成形GH4169合金的显微组织和EDS分析
图4  经1050STA和1080STA热处理后,连续点式锻压激光快速成形GH4169合金的显微组织
图5  经980STA、1020STA、1050STA 和1080STA热处理后,GH4169合金试样的显微硬度
Heat treatment σs / MPa σb / MPa Elongation / %
980STA 1120.1 1361.3 10.1
1020STA 1301.6 1523.4 16.4
1050STA 1235.4 1447.6 19.8
1080STA 1112.2 1362.1 12.4
Wrought standard (Q/3B 548-1996) 1100.0 1340.0 12.0
表3  不同热处理的GH4169合金拉伸力学性能
图6  不同热处理后GH4169合金的拉伸断口形貌
[1] Mei Y P, Liu Y C, Liu C X, et al.Effects of cold rolling on the precipitation kinetics and the morphology evolution of intermediate phases in Inconel 718 alloy[J]. J. Alloys Compd., 2015, 649: 949
[2] Chang L T, Sun W R, Cui Y Y, et al.Effect of heat treatment on microstructure and mechanical properties of the hot-isostatic-pressed Inconel 718 powder compact[J]. J. Alloys Compd., 2014, 590: 227
[3] Lambarrin J, Leunda J, Navas V G, et al.Microstructural and tensile characterization of Inconel 718 laser coatings for aeronautic components[J]. Opt. Laser. Eng., 2013, 51: 813
[4] Zhang Q L, Yao J H, Mazumder J.Laser direct metal deposition technology and microstructure and composition segregation of Inconel 718 superalloy[J]. J. Iron Steel Res. Int., 2011, 18: 73
[5] Chang L T, Sun W R, Cu Y Y, et al.Influences of hot-isostatic-pressing temperature on microstructure, tensile properties and tensile fracture mode of Inconel 718 powder compact[J]. Mater. Sci. Eng., 2014, A599: 186
[6] Mei Y P, Liu Y C, Liu C X, et al.Effects of cold rolling on the precipitation kinetics and the morphology evolution of intermediate phases in Inconel 718 alloy[J]. J. Alloys Compd., 2015, 649: 949
[7] Rao G A, Srinivas M, Sarma D S.Effect of thermomechanical working on the microstructure and mechanical properties of hot isostatically pressed superalloy Inconel 718[J]. Mater. Sci. Eng., 2004, A383: 201
[8] Wang Y D, Tang H B, Fang Y L, et al.Effect of heat treatment on microstructure and mechanical properties of laser melting deposited 1Cr12Ni2WMoVNb steel[J]. Mater. Sci. Eng., 2010, A528: 474
[9] Zhang Q, Chen J, Lin X, et al.Grain morphology control and texture characterization of laser solid Formed Ti6Al2Sn2Zr3Mo1.5Cr2Nb titanium alloy[J]. J. Mater. Process. Technol., 2016, 238: 202
[10] Wang Y D, Tang H B, Fang Y L, et al.Microstructure and mechanical properties of laser melting deposited 1Cr12Ni2WMoVNb steel[J]. Mater. Sci. Eng., 2010, A527: 4804
[11] Zhu Y Y, Liu D, Tian X J, et al.Characterization of microstructure and mechanical properties of laser melting deposited Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy[J]. Mater. Des., 2014, 56: 445
[12] Zhu Y Y, Li J, Tian X J, et al.Microstructure and mechanical properties of hybrid fabricated Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy by laser additive manufacturing[J]. Mater. Sci. Eng., 2014, A607: 427
[13] Liu C M, Wang H M, Tian X J, et al.Microstructure and tensile properties of laser melting deposited Ti-5Al-5Mo-5V-1Cr-1Fe near β titanium alloy[J]. Mater. Sci. Eng., 2013, A586: 323
[14] Liu F C, Lin X, Huang C P, et al.The effect of laser scanning path on microstructures and mechanical properties of laser solid formed nickel-base superalloy Inconel 718[J]. J. Alloys Compd., 2011, 509: 4505
[15] Liu F C, Lin X, Yang G L, et al.Microstructure and residual stress of laser rapid formed Inconel 718 nickel-base superalloy[J]. Opt. Laser Technol., 2011, 43: 208
[16] Liu F C, Lin X, Zhao W W, et al.Effects of solution treatment temperature on microstructures and properties of laser solid forming GH4169 superalloy[J]. Rare Met. Mater. Eng., 2010, 39: 1519
[17] Liu F C, Lin X, Yang G L, et al.Microstructures and mechanical properties of laser solid formed nickle base superalloy Inconel 718 prepared in different atmospheres[J]. Acta Metall. Sin., 2010, 46: 1047
[17] (刘奋成, 林鑫, 杨高林等. 不同气氛激光立体成形镍基高温合金Inconel 718的显微组织和力学性能[J]. 金属学报, 2010, 46: 1047)
[18] Zhao W W, Lin X, Liu F C, et al.Effect of heat treatment on microstructure and mechanical properties of laser solid forming Inconel 718 superalloy[J]. Chin. J. Lasers, 2009, 36: 3220
[18] (赵卫卫, 林鑫, 刘奋成等. 热处理对激光立体成形Inconel 718高温合金组织和力学性能的影响[J]. 中国激光, 2009, 36: 3220)
[19] Zhao X M, Chen J, Lin X, et al.Study on microstructure and mechanical properties of laser rapid forming Inconel 718[J]. Mater. Sci. Eng., 2008, A478: 119
[20] Song K, Yu K, Lin X, et al.Microstructure and mechanical properties of heat treatment laser solid forming superalloy Inconel 718[J]. Acta Metall. Sin., 2015, 51: 935
[20] (宋衎, 喻凯, 林鑫等. 热处理态激光立体成形Inconel 718高温合金的组织及力学性能[J]. 金属学报, 2015, 51: 935)
[21] Zhang D Y, Niu W, Cao X Y, et al.Effect of standard heat treatment on the microstructure and mechanical properties of selective laser melting manufactured Inconel 718 superalloy[J]. Mater. Sci. Eng., 2015, A644: 32
[22] Wang Z M, Guan K, Gao M, et al.The microstructure and mechanical properties of deposited-IN718 by selective laser melting[J]. J. Alloys Compd., 2012, 513: 518
[23] Xi M Z, Liu J B, Zhao Y, et al.Microstructures of heat treatment and properties of TA15 titanium alloy formed by technology of laser rapid forming combined with continuous point forging[J]. Chin. J. Lasers, 2016, 43: 203001
[23] (席明哲, 刘静波, 赵毅等. 连续点式锻压激光快速成形TA15钛合金热处理组织与性能[J]. 中国激光, 2016, 43: 203001)
[24] Rao G A, Kumar M, Srinivas M, et al.Effect of standard heat treatment on the microstructure and mechanical properties of hot isostatically pressed superalloy Inconel 718[J]. Mater. Sci. Eng., 2003, A355: 114
[25] Ram G D J, Reddy A V, Rao K P, et al. Microstructure and tensile properties of Inconel 718 pulsed Nd-YAG laser welds[J]. J. Mater. Process. Technol., 2005, 167: 73
[1] 张玉妥,李丛,王培,李殿中. 9Ni钢拉伸性能的同步辐射高能X射线原位研究*[J]. 金属学报, 2016, 52(4): 403-409.
[2] 张显峰,李国爱,陆政,于娟,郝敏. 淬火后预拉伸对自然时效状态Al-Li合金组织和性能的影响*[J]. 金属学报, 2016, 52(12): 1497-1502.
[3] 张旭, 王玉敏, 杨青, 雷家峰, 杨锐. SiCf/TC17复合材料拉伸行为研究[J]. 金属学报, 2015, 51(9): 1025-1037.
[4] 郝宪朝,张龙,熊超,马颖澈,刘奎. 760 ℃长期时效对一种Ni-Cr-W-Fe合金组织和力学性能的影响*[J]. 金属学报, 2015, 51(7): 807-814.
[5] 崔跃,席文君,王星,李树杰. 纳米Al2O3和NiAl共同强化的铁基ODS合金的铝热合成研究[J]. 金属学报, 2015, 51(7): 791-798.
[6] 杨亮,高叔博,王艳丽,叶腾,宋霖,林均品. Si对高Nb-TiAl合金组织及室温拉伸性能的影响*[J]. 金属学报, 2015, 51(7): 859-865.
[7] 赵子博, 王清江, 刘建荣, 陈志勇, 朱绍祥, 于冰冰. Ti60合金棒材中的织构及其对拉伸性能的影响*[J]. 金属学报, 2015, 51(5): 561-568.
[8] 丁宏升, 尚子博, 王永喆, 陈瑞润, 郭景杰, 傅恒志. 冷坩埚定向凝固Ti-47Al-2Cr-2Nb合金的拉伸与高周疲劳性能研究*[J]. 金属学报, 2015, 51(5): 569-579.
[9] 王星, 席文君, 崔跃, 李树杰. 铝热合成NiAl共格强化的FeNiCrAl合金的组织演化机理和力学性能[J]. 金属学报, 2015, 51(4): 483-491.
[10] 王效光,李嘉荣,喻健,刘世忠,史振学,岳晓岱. DD9单晶高温合金拉伸性能各向异性[J]. 金属学报, 2015, 51(10): 1253-1260.
[11] 安祥海, 吴世丁, 张哲峰. 层错能对纳米晶Cu-Al合金微观结构、拉伸及疲劳性能的影响*[J]. 金属学报, 2014, 50(2): 191-201.
[12] 谭梅林, 王常帅, 郭永安, 郭建亭, 周兰章. Ti/Al比对GH984G合金长期时效过程中γ ′沉淀相粗化行为及拉伸性能的影响[J]. 金属学报, 2014, 50(10): 1260-1268.
[13] 刘仁慈,王震,刘冬,柏春光,崔玉友,杨锐. Ti-45.5Al-2Cr-2Nb-0.15B合金热挤压组织与拉伸性能研究[J]. 金属学报, 2013, 49(6): 641-648.
[14] 肖旋,赵海强,王常帅,郭永安,郭建亭,周兰章. B和P对GH984合金组织和力学性能的影响[J]. 金属学报, 2013, 29(4): 421-427.
[15] 贾鹏,王恩刚,鲁辉,赫冀成. 电磁场对Inconel 625合金凝固组织及力学性能的影响[J]. 金属学报, 2013, 49(12): 1573-1580.