Please wait a minute...
金属学报  2017, Vol. 53 Issue (2): 211-219    DOI: 10.11900/0412.1961.2016.00353
  本期目录 | 过刊浏览 |
Mg-5Al-xCa合金的热裂行为
王峰(),董海阔,王志,毛萍莉,刘正
沈阳工业大学材料科学与工程学院 沈阳 110870
Hot Cracking Behavior of Mg-5Al-xCa Alloys
Feng WANG(),Haikuo DONG,Zhi WANG,Pingli MAO,Zheng LIU
School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
引用本文:

王峰,董海阔,王志,毛萍莉,刘正. Mg-5Al-xCa合金的热裂行为[J]. 金属学报, 2017, 53(2): 211-219.
Feng WANG, Haikuo DONG, Zhi WANG, Pingli MAO, Zheng LIU. Hot Cracking Behavior of Mg-5Al-xCa Alloys[J]. Acta Metall Sin, 2017, 53(2): 211-219.

全文: PDF(6574 KB)   HTML
摘要: 

在浇注温度700 ℃、模具温度200 ℃条件下,通过热裂曲线和凝固曲线测试以及OM、XRD、SEM等手段分析了Ca加入量对Mg-5Al-xCa (x=0.5、1.0、2.0、3.0、4.0、5.0,质量分数,%)合金热裂敏感性的影响。结果表明,当Ca加入量增加到4.0%时,合金的热裂敏感性随着Ca加入量的增加而减小;Mg-5Al-4.0Ca合金的热裂敏感性最小,其热裂敏感性系数仅为0.824;Ca加入量增加到5.0%时,合金的热裂敏感性又出现上升,其热裂敏感性系数上升到0.96。加入适量的Ca会降低Mg-5Al-xCa合金凝固时α-Mg的析出温度,并抑制Mg17Al12相形成,缩小合金凝固温度范围,增加组织中的共晶含量,有利于合金凝固后期的补缩,从而降低合金的热裂敏感性。但加入过多的Ca会增加含Ca脆性相的数量,并使合金组织发生粗化,从而导致合金的热裂敏感性增加。

关键词 Mg-Al-Ca合金热裂敏感性凝固曲线显微组织    
Abstract

Mg-Al-Ca base alloys have great potential for application because of its low cost and good high temperature creep properties, but its higher hot cracking susceptibility greatly limits the application of the alloy. The effect of Ca addition on the hot cracking susceptibility of Mg-5Al-xCa (x=0.5, 1.0, 2.0, 3.0, 4.0, 5.0, mass fraction, %) alloys at the pouring temperature 700 ℃ and mold temperature 200 ℃ was studied by using hot cracking curve test, solidification curve test, OM, XRD and SEM. The results showed that the hot cracking susceptibility of alloys decreased with increasing Ca addition until to 4.0%, and the Mg-5Al-4.0Ca alloy had minimal hot cracking susceptibility, which cracking susceptibility coefficient was only 0.824. But when Ca addition increased to 5.0%, the hot cracking susceptibility of the alloy increased, and the cracking susceptibility coefficient increased to 0.96. The appropriate Ca addition can reduce the precipitation temperature of α-Mg in Mg-5Al-xCa alloys, inhibit precipitation of Mg17Al12 phase, narrow solidification temperature range of the alloy and increase eutectic content, which are helpful for the alloy having a stronger ability of compensation at the solidification end to decrease hot cracking susceptibility. But excessive Ca addition will increase the numbers of brittle phases containing Ca and coarsen the microstructure, resulting in the increase of hot cracking susceptibility.

Key wordsMg-Al-Ca alloy    hot cracking susceptibility    solidification curve    microstructure
收稿日期: 2016-08-02     
基金资助:国家自然科学基金项目Nos.51504153和51571145以及辽宁省自然科学基金项目No.201602548
Alloy Al Ca Mg
Mg-5Al-0.5Ca 4.65 0.42 Bal.
Mg-5Al-1.0Ca 4.80 0.83 Bal.
Mg-5Al-2.0Ca 4.59 1.67 Bal.
Mg-5Al-3.0Ca 4.81 2.54 Bal.
Mg-5Al-4.0Ca 4.67 3.61 Bal.
Mg-5Al-5.0Ca 4.52 4.51 Bal.
表1  Mg-5Al-xCa合金的化学成分
图1  热裂测试系统示意图及热裂试样
图2  Mg-5Al-xCa合金热裂试样照片
图3  Mg-5Al-xCa合金热裂曲线
Alloy Hot crack initiation Hot crack propagation
θi / ℃ fs-i / % Fr / N tp / s vP / (Ns-1)
Mg-5Al-0.5Ca 467 98.2 0.614 0.72 0.853
Mg-5Al-1.0Ca 451 97.4 0.536 1.26 0.425
Mg-5Al-2.0Ca 430 97.1 0.371 0.91 0.408
Mg-5Al-3.0Ca 434 97.6 0.215 1.17 0.184
Mg-5Al-4.0Ca - - - - -
Mg-5Al-5.0Ca 441 98.5 2.079 2.67 0.779
表2  Mg-5Al-xCa合金热裂测试结果
图4  Mg-5Al-xCa合金凝固曲线
Alloy Peak A Peak B Peak C Peak D Peak E
α-Mg L→α+C14 L→α+C36 L+C36 → α+A12 L→α+C14+C36
Mg-5Al-0.5Ca 621 525 513 424 -
Mg-5Al-1.0Ca 619 525 519 - -
Mg-5Al-2.0Ca 614 528 521 - -
Mg-5Al-3.0Ca 610 - 528 - -
Mg-5Al-4.0Ca 598 - 528 - 511
Mg-5Al-5.0Ca 598 - 528 - 512
表3  图4中Mg-5Al-xCa合金凝固曲线对应关键点反应及反应温度
图5  Mg-5Al-xCa合金凝固温度范围及热裂敏感性系数
图6  Mg-5Al-xCa合金热裂部位的显微组织
图7  Mg-5Al-xCa合金SEM像
图8  Mg-5Al-xCa合金的XRD谱
图9  Mg-5Al-4.0Ca合金裂纹延伸末端及局部SEM像
[1] Liu Z, Wang Z G, Wang Y, et al.Application and developing tendency of magnesium die casting alloys in automobile industry[J]. Spec. Cast. Nonferrous Alloys, 2002, 22(S1): 300
[1] (刘正, 王中光, 王越等. 压铸镁合金在汽车工业中的应用和发展趋势[J]. 特种铸造及有色合金, 2002, 22(S1): 300)
[2] Lou Y, Bai X, Li L X.Effect of Sr addition on microstructure of as-cast Mg-Al-Ca alloy[J]. Trans. Nonferrous Met. Soc. China, 2011, 21: 1247
[3] Suzuki A, Saddock N D, Jones J W, et al.Solidification paths and eutectic intermetallic phases in Mg-Al-Ca ternary alloys[J]. Acta Mater., 2005, 53: 2823
[4] Zhang J, Feng Y C, Wang Q, et al.Effects of different Ca and Nd addition on corrosion resistance of Mg-6Al alloys[J]. Spec. Cast. Nonferrous Alloys, 2015, 35: 430
[4] (张靖, 冯义成, 王琴等. 不同Ca和Nd含量对Mg-6Al合金腐蚀性能的影响[J]. 特种铸造及有色合金, 2015, 35: 430)
[5] Bai J, Sun Y S, Xue F, et al.Microstructures and creep properties of Mg-6Al-(Sr, Ca) alloys[J]. Acta Metall. Sin., 2006, 42: 1267
[5] (白晶, 孙扬善, 薛烽等. Mg-6Al-(Sr, Ca)合金的显微组织和蠕变性能[J]. 金属学报, 2006, 42: 1267)
[6] Li H Y, Bai Y Y, Zhang H T, et al.Effect of Mn on hot cracking tendency of Mg-6.5Zn alloys[J]. Acta Metall. Sin., 2014, 50: 1237
[6] (李浩宇, 柏媛媛, 张海涛等. Mn对Mg-6.5Zn合金热裂倾向性的影响[J]. 金属学报, 2014, 50: 1237)
[7] Liang W Z, Ji Z S, Zuo F, et al.Present research status and developing tendency of heat resistance Mg alloy[J]. Spec. Cast. Nonferrous Alloys, 2003, 23(2): 39
[7] (梁维中, 吉泽升, 左锋等. 耐热镁合金的研究现状及发展趋势[J]. 特种铸造及有色合金, 2003, 23(2): 39)
[8] Luo A H, Sachdev A K, Powell B R.Advanced casting technologies for lightweight automotive applications[J]. Foundry, 2011, 60: 113
[8] (罗爱华, Sachdev A K, Powell B R.汽车轻量化先进铸造技术[J]. 铸造, 2011, 60: 113)
[9] Cao G, Kou S.Hot tearing of ternary Mg-Al-Ca alloy castings[J]. Metall. Mater. Trans., 2006, 37A: 3647
[10] Cao G, Kou S.Hot cracking of binary Mg-Al alloy castings[J]. Mater. Sci. Eng., 2006, A417: 230
[11] Qiu K Q, Tao S R, Re Y, et al.Effect of Ca on the hot tearing susceptibility of Mg-7Al-2Si casting alloys[J]. Spec. Cast. Nonferrous Alloys, 2013, 33: 186
[11] (邱克强, 陶思伟, 热焱等. Ca对Mg-7Al-2Si合金热裂倾向的影响[J]. 特种铸造及有色合金, 2013, 33: 186)
[12] Huang H, Fu P H, Peng L M, et al.Effect of mould temperature and pouring temperature on the hot tearing and fluidity of AZ91D magnesium alloy[J]. Spec. Cast. Nonferrous Alloys, 2012, 32: 81
[12] (黄皓, 付彭怀, 彭立明等. 模具温度和浇注温度对AZ91D镁合金热裂和流动性能的影响[J]. 特种铸造及有色合金, 2012, 32: 81)
[13] Suzuki A, Saddock N D, Jones J W, et al.Phase equilibria in the Mg-Al-Ca ternary system at 773 and 673 K[J]. Metall. Mater. Trans., 2006, 37A: 975
[14] Clyne T W, Wolf M, Kurz W.The effect of melt composition on solidification cracking of steel, with particular reference to continuous casting[J]. Metall. Trans., 1982, 13B: 259
[15] Clyne T W, Davies G J.The influence of composition on solidification cracking susceptibility in binary alloy systems[J]. Brit. Found., 1981, 74: 65
[16] Hou D H, Liang S M, Chen R S, et al.Solidification behavior and grain size of sand casting Mg-6Al-xZn alloys[J]. Acta Metall. Sin., 2015, 50: 601
[16] (侯丹辉, 梁松茂, 陈荣石等. 砂型铸造Mg-6Al-xZn合金凝固行为及晶粒尺寸[J]. 金属学报, 2015, 50: 601)
[17] Xu S W, Matsumoto N, Yamamoto K, et al.High temperature tensile properties of as-cast Mg-Al-Ca alloys[J]. Mater. Sci. Eng., 2009, A509: 105
[18] Yang G Y, Hao Q T, Jie W Q, et al.Effect of Ca addition on the microstructure and mechanical properties of Mg-5Al-0.4Zn casting alloy[J]. Acta Metall. Sin., 2005, 41: 933
[18] (杨光昱, 郝启堂, 介万奇等. Ca加入量对Mg-5Al-0.4Zn基铸造合金组织与力学性能的影响[J]. 金属学报, 2005, 41: 933)
[19] TerBush J R, Chen O H, Jones J W, et al. The dependence of creep behavior on elemental partitioning in Mg-5Al-3Ca-xSn alloys[J]. Metall. Mater. Trans., 2012, 43A: 3120
[20] Liang S M, Zhang H W, Xia M X, et al.Microstructure and mechanical properties of melt-conditioned high-pressure die-cast Mg-Al-Ca alloy[J]. Trans. Nonferrous Met. Soc. China, 2010, 20: 1205
[21] Liu Z, Zhang S B, Mao P L, et al.Effects of Y on hot tearing susceptibility of Mg-Zn-Y-Zr alloys[J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 907
[22] Zhang D T, Suzuki M, Maruyama K.Study on the texture of a friction stir welded Mg-Al-Ca alloy[J]. Acta Metall. Sin.(Engl. Lett.), 2006, 19: 335
[23] Wang S Y, Wang Q D, Ding W J, et al.Research development of hot tear mechanism for cast alloys[J]. Spec. Cast. Nonferrous Alloys, 2000, 20(2): 48
[23] (王业双, 王渠东, 丁文江等. 合金的热裂机理及其研究进展[J]. 特种铸造及有色合金, 2000, 20(2): 48)
[24] Ding H, Fu H Z, Liu Z Y, et al.Compensation of solidification contraction and hot cracking tendency of alloys[J]. Acta Metall. Sin., 1997, 33: 921
[24] (丁浩, 傅恒志, 刘忠元等. 凝固收缩补偿与合金的热裂倾向[J]. 金属学报, 1997, 33: 921)
[25] Zhang Z M, Lü T, Xu C J, et al.Microstructure of binary Mg-Al eutectic alloy wires produced by the Ohno continuous casting process[J]. Acta Metall. Sin.(Engl. Lett.), 2008, 21: 275
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[4] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[5] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[6] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[7] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[8] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[9] 葛进国, 卢照, 何思亮, 孙妍, 殷硕. 电弧熔丝增材制造2Cr13合金组织与性能各向异性行为[J]. 金属学报, 2023, 59(1): 157-168.
[10] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[11] 杨天野, 崔丽, 贺定勇, 黄晖. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58(9): 1108-1117.
[12] 刘仁慈, 王鹏, 曹如心, 倪明杰, 刘冬, 崔玉友, 杨锐. 700℃热暴露对 β 凝固 γ-TiAl合金表面组织及形貌的影响[J]. 金属学报, 2022, 58(8): 1003-1012.
[13] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.
[14] 张鑫, 崔博, 孙斌, 赵旭, 张欣, 刘庆锁, 董治中. Y元素对Cu-Al-Ni高温形状记忆合金性能的影响[J]. 金属学报, 2022, 58(8): 1065-1071.
[15] 孙蓉蓉, 姚美意, 林晓冬, 张文怀, 仇云龙, 胡丽娟, 谢耀平, 杨健, 董建新, 成国光. 添加TiFe22Cr5Al3Mo合金在500℃过热蒸汽中腐蚀行为的影响[J]. 金属学报, 2022, 58(5): 610-622.