Please wait a minute...
金属学报  2016, Vol. 52 Issue (10): 1171-1182    DOI: 10.11900/0412.1961.2016.00348
  论文 本期目录 | 过刊浏览 |
金属玻璃的断裂行为与强度理论研究进展*
张哲峰,屈瑞涛,刘增乾
中国科学院金属研究所沈阳材料科学国家(联合)实验室, 沈阳 110016
ADVANCES IN FRACTURE BEHAVIOR AND STRENGTH THEORY OF METALLIC GLASSES
Zhefeng ZHANG,Ruitao QU,Zengqian LIU
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(1517 KB)   HTML
摘要: 

由于特殊的非晶态结构, 金属玻璃表现出与传统晶体材料十分不同的变形与断裂行为. 金属玻璃具有高强、脆性和宏观均匀、各向同性的特点, 使其成为研究高强度材料强度理论的理想模型材料, 因而关于金属玻璃的断裂行为与强度理论研究至今仍然吸引着材料、力学和物理等学科研究人员的广泛兴趣. 本文基于作者十多年来关于金属玻璃断裂与强度方面的研究工作, 着重阐述对韧性和脆性金属玻璃的断裂行为和强度理论方面的最新认识和研究进展, 最后提出金属玻璃断裂与强度方面尚待解决的科学问题.

关键词 金属玻璃屈服断裂变形强度理论    
Abstract

Owing to the unique amorphous structure, metallic glasses (MGs) exhibit quite distinctive deformation and fracture behaviors from the conventional crystalline materials. The high strength, brittleness and macroscopic homogenous and isotropic structural features make MGs ideal model materials for the investigations of the strength theory of high-strength materials. Hence the fracture behavior and strength theory of MGs have attracted very extensive interests of researchers from the fields of materials, mechanics and physics. This paper is based on the research works of the authors on the fracture and strength of MGs in the past decade, and concentrates on discussing the current knowledge and recent advances on the fracture behavior and strength theory of ductile and brittle MGs. Firstly, the fracture behaviors of ductile and brittle MGs including tension-compression strength asymmetry, fracture mechanism and ductile-to-brittle transition will be briefly elaborated. Then the strength theories of MGs will be discussed, with our emphasis on the foundation, validation, further development and application of the ellipse criterion. At last, some unsolved issues associated with the fracture and strength of MGs are proposed.

Key wordsmetallic glass    yielding    fracture    deformation    strength theory
收稿日期: 2016-08-02      出版日期: 2016-11-25
基金资助:* 国家自然科学基金项目51331007, 51301174和51501190资助

引用本文:

张哲峰, 屈瑞涛, 刘增乾. 金属玻璃的断裂行为与强度理论研究进展*[J]. 金属学报, 2016, 52(10): 1171-1182.
Zhefeng ZHANG, Ruitao QU, Zengqian LIU. ADVANCES IN FRACTURE BEHAVIOR AND STRENGTH THEORY OF METALLIC GLASSES. Acta Metall, 2016, 52(10): 1171-1182.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2016.00348      或      http://www.ams.org.cn/CN/Y2016/V52/I10/1171

图1  典型韧性金属玻璃的拉伸与压缩应力-应变曲线[34]
图2  典型韧性金属玻璃的拉伸与压缩剪切断裂形貌[37]
图3  典型脆性金属玻璃的拉伸与压缩断裂形貌[30,37,68]
图4  金属玻璃的韧脆转变及解释[80]
图5  Mohr-Coulomb准则对韧性金属玻璃剪切断裂行为预测的几种情况[95]
图6  椭圆准则预测材料拉伸断裂行为的3种不同情况[89]
图7  名义断裂应力随剪切断裂角度的变化关系和2种准则的预测[34]
图8  Vit-105金属玻璃剪切断裂的正应力效应和2种准则的预测[34]
图9  能量准则对剪切与解理竞争作用结果的金属玻璃拉伸断裂的预测[98]
图10  在正-切应力空间普适性准则预测的临界屈服/断裂线[95]
图11  普适性准则在二维应力空间的屈服面及其与金属玻璃的实验和模拟结果的对比
图12  基于弹性常数及普适性准则对金属玻璃断裂行为的预测[41]
[1] Ashby M F, Greer A L.Scr Mater, 2006; 54: 321
[2] Wang J, Li R, Hua N, Zhang T.J Mater Res, 2011; 26: 2072
[3] Sun B A, Pan M X, Zhao D Q, Wang W H, Xi X K, Sandor M T, Wu Y.Scr Mater, 2008; 59: 1159
[4] Qu R T, Liu Z Q, Wang R F, Zhang Z F.J Alloys Compd, 2015; 637: 44
[5] Liu Y H, Wang G, Wang R J, Zhao D Q, Pan M X, Wang W H.Science, 2007; 315: 1385
[6] Hofmann D C, Suh J Y, Wiest A, Duan G, Lind M L, Demetriou M D, Johnson W L.Nature, 2008; 451: 1085
[7] Demetriou M D, Launey M E, Garrett G, Schramm J P, Hofmann D C, Johnson W L, Ritchie R O.Nat Mater, 2011; 10: 123
[8] He Q, Cheng Y Q, Ma E, Xu J.Acta Mater, 2011; 59: 202
[9] Wu Y, Xiao Y, Chen G, Liu C T, Lu Z.Adv Mater, 2010; 22: 2770
[10] Liu Z Q, Liu G, Qu R T, Zhang Z F, Wu S J, Zhang T.Sci Rep, 2014; 4: 4167
[11] Ketov S V, Sun Y H, Nachum S, Lu Z, Checchi A, Beraldin A R, Bai H Y, Wang W H, Louzguine-Luzgin D V, Carpenter M A, Greer A L.Nature, 2015; 524: 200
[12] Zhang Y, Wang W H, Greer A L.Nat Mater, 2006; 5: 857
[13] Chu J P, Greene J E, Jang J S C, Huang J C, Shen Y L, Liaw P K, Yokoyama Y, Inoue A, Nieh T G.Acta Mater, 2012; 60: 3226
[14] Sarac B, Schroers J.Nat Commun, 2013; 4: 2158
[15] Qu R T, Zhang Q S, Zhang Z F.Scr Mater, 2013; 68: 845
[16] Qu R T, Zhao J X, Stoica M, Eckert J, Zhang Z F.Mater Sci Eng, 2012; A534: 365
[17] Nieh T G, Yang Y, Lu J, Liu C T.Prog Nat Sci Mater Int, 2012; 22: 355
[18] Sun B A, Wang W H.Prog Mater Sci, 2015; 74: 211
[19] Zhang Z F, Wu F F, He G, Eckert J.J Mater Sci Technol, 2007; 23: 747
[20] Schuh C A, Hufnagel T C, Ramamurty U.Acta Mater, 2007; 55: 4067
[21] Trexler M M, Thadhani N N.Prog Mater Sci, 2010; 55: 759
[22] Greer A L, Cheng Y Q, Ma E.Mater Sci Eng, 2013; R74: 71
[23] Qiao J, Jia H, Liaw P K.Mater Sci Eng, 2016; R100: 1
[24] Hufnagel T C, Schuh C A, Falk M L.Acta Mater, 2016; 109: 375
[25] Zhang Y, Greer A L.Appl Phys Lett, 2006; 89: 071907
[26] Guo H, Yan P F, Wang Y B, Tan J, Zhang Z F, Sui M L, Ma E.Nat Mater, 2007; 6: 735
[27] Spaepen F.Acta Metall, 1977; 25: 407
[28] Wang Z T, Pan J, Li Y, Schuh C A.Phys Rev Lett, 2013; 111: 135504
[29] Leamy H, Wang T, Chen H.Metall Mater Trans, 1972; 3B: 699
[30] Zhang Z F, Zhang H, Shen B L, Inoue A, Eckert J.Philos Mag Lett, 2006; 86: 643
[31] Lewandowski J J, Wang W H, Greer A L.Philos Mag Lett, 2005; 85: 77
[32] Xu J, Ramamurty U, Ma E.JOM, 2010; 62(4): 10
[33] Qu R T, Liu Z Q, Wang G, Zhang Z F.Acta Mater, 2015; 91: 19
[34] Qu R T, Eckert J, Zhang Z F.J Appl Phys, 2011; 109: 083544
[35] Xu J, Ma E.J Mater Res, 2014; 29: 1489
[36] Schroers J, Johnson W L.Phys Rev Lett, 2004; 93: 255506
[37] Zhang Z F, He G, Eckert J, Schultz L.Phys Rev Lett, 2003; 91: 045505
[38] Donovan P E.Acta Metall, 1989; 37: 445
[39] Zhang Z F, Eckert J, Schultz L.Acta Mater, 2003; 51: 1167
[40] Schuh C A, Lund A C.Nat Mater, 2003; 2: 449
[41] Liu Z Q, Qu R T, Zhang Z F.J Appl Phys, 2015; 117: 014901
[42] Li G, Jiang M Q, Jiang F, He L, Sun J.Mater Sci Eng, 2015; A625: 393
[43] Li G, Jiang M Q, Jiang F, He L, Sun J.Appl Phys Lett, 2013; 102: 171901
[44] Qu R T, Stoica M, Eckert J, Zhang Z F.J Appl Phys, 2010; 108: 063509
[45] Pampillo C A.J Mater Sci, 1975; 10: 1194
[46] Spaepen F.Acta Metall, 1975; 23: 615
[47] Argon A S, Salama M.Mater Sci Eng, 1976; 23: 219
[48] Deibler L A, Lewandowski J J.Mater Sci Eng, 2012; A538: 259
[49] Qu R T, Zhang Z F.J Appl Phys, 2013; 114: 193504
[50] Hull D.Fractography: Observing, Measuring and Interpreting Fracture Surface Topography. Cambridge: Cambridge University Press, 1999: 1
[51] Zhao Y Y, Zhang G, Estévez D, Chang C, Wang X, Li R W.JAlloys Compd, 2015; 621: 238
[52] Maa? R, Birckigt P, Borchers C, Samwer K, Volkert C A.Acta Mater, 2015; 98: 94
[53] Sun B A, Yang Y, Wang W H, Liu C T.Sci Rep, 2016; 6: 21388
[54] Wu Y, Li H X, Liu Z Y, Chen G L, Lu Z P.Intermetallics, 2010; 18: 157
[55] Qu R T, Calin M, Eckert J, Zhang Z F.Scr Mater, 2012; 66: 733
[56] Qu R T, Zhang P, Zhang Z F.J Mater Sci Technol, 2014; 30: 599
[57] Sha Z D, Pei Q X, Sorkin V, Branicio P S, Zhang Y W, Gao H.Appl Phys Lett, 2013; 103: 081903
[58] Lei X, Li C, Shi X, Xu X, Wei Y.Sci Rep, 2015; 5: 10537
[59] Yao J H, Wang J Q, Lu L, Li Y.Appl Phys Lett, 2008; 92: 041905
[60] Zhao Y Y, Ma E, Xu J.Scr Mater, 2008; 58: 496
[61] Zheng X L, Wang H, Zheng M S, Wang F H.Notch Strength and Notch Sensitivity of Materials. Beijing: Science Press, 2008: 1
[62] Murali P, Ramamurty U.Acta Mater, 2005; 53: 1467
[63] Kumar G, Rector D, Conner R D, Schroers J.Acta Mater, 2009; 57: 3572
[64] Jiang F, Jiang M Q, Wang H F, Zhao Y L, He L, Sun J.Acta Mater, 2011; 59: 2057
[65] Ketkaew J, Liu Z, Chen W, Schroers J.Phys Rev Lett, 2015; 115: 265502
[66] Han Z H, He L, Hou Y L, Feng J, Sun J.Intermetallics, 2009; 17: 553
[67] Madge S V, Wada T, Louzguine-Luzgin D V, Greer A L, Inoue A.Scr Mater, 2009; 61: 540
[68] Zhang Z F, Wu F F, Gao W, Tan J, Wang Z G, Stoica M, Das J, Eckert J, Shen B L, Inoue A.Appl Phys Lett, 2006; 89: 251917
[69] Xi X K, Zhao D Q, Pan M X, Wang W H, Wu Y, Lewandowski J J.Phys Rev Lett, 2005; 94: 125510
[70] Wang G, Zhao D Q, Bai H Y, Pan M X, Xia A L, Han B S, Xi X K, Wu Y, Wang W H.Phys Rev Lett, 2007; 98: 235501
[71] Shen J, Liang W Z, Sun J F.Appl Phys Lett, 2006; 89: 121908
[72] Meng J X, Ling Z, Jiang M Q, Zhang H S, Dai L H.Appl Phys Lett, 2008; 92: 171909
[73] Jiang M Q, Ling Z, Meng J X, Dai L H.Philos Mag, 2008; 88: 407
[74] Zhao J X, Qu R T, Wu F F, Zhang Z F, Shen B L, Stoica M, Eckert J.J Appl Phys, 2009; 105: 103519
[75] Xia X X, Wang W H.Small, 2012; 8: 1197
[76] Jiang M Q, Meng J X, Gao J B, Wang X L, Rouxel T, Keryvin V, Ling Z, Dai L H.Intermetallics, 2010; 18: 2468
[77] Gao M, Sun B A, Yuan C C, Ma J, Wang W H.Acta Mater, 2012; 60: 6952
[78] Murali P, Guo T F, Zhang Y W, Narasimhan R, Li Y, Gao H J.Phys Rev Lett, 2011; 107: 215501
[79] Singh I, Narasimhan R, Ramamurty U.Phys Rev Lett, 2016; 117: 044302
[80] Liu Z Q, Wang W H, Jiang M Q, Zhang Z F.Philos Mag Lett, 2014; 94: 658
[81] Cheng Y Q, Ma E.Prog Mater Sci, 2011; 56: 379
[82] Madge S V, Louzguine-Luzgin D V, Lewandowski J J, Greer A L.Acta Mater, 2012; 60: 4800
[83] Yuan Z W, Li F G, Wang R T, Wang C P, Li J, Xue F M.Theor Appl Fract Mech, 2014; 74: 96
[84] Johnson W L, Samwer K.Phys Rev Lett, 2005; 95: 195501
[85] Pan J, Chen Q, Liu L, Li Y.Acta Mater, 2011; 59: 5146
[86] Paul B.In: Liebowitz H ed., Fracture, An Advanced Treatise. Vol.II, New York: Academic Press, 1968: 313
[87] Lund A C, Schuh C A.Acta Mater, 2003; 51: 5399
[88] Yu M H.Appl Mech Rev, 2002; 55: 169
[89] Zhang Z F, Eckert J.Phys Rev Lett, 2005; 94: 094301
[90] Chen Y, Jiang M Q, Wei Y J, Dai L H.Philos Mag, 2011; 91: 4536
[91] Coulomb C.Memoires de Mathematique et de Physique, Presentes al' Academie, Royale des Sciences par Divers Savans, et Lus dans ses Assemblees, 1773; 7: 343
[92] Davis L A, Kavesh S.J Mater Sci, 1975; 10: 453
[93] Anand L, Su C.J Mech Phys Solids, 2005; 53: 1362
[94] Lei X, Wei Y, Wei B, Wang W H.Acta Mater, 2015; 99: 206
[95] Qu R T, Zhang Z F.Sci Rep, 2013; 3: 1117
[96] Wu F F, Zhang Z F, Mao S X, Peker A, Eckert J.Phys Rev, 2007; 75B: 134201
[97] Packard C E, Schuh C A.Acta Mater, 2007; 55: 5348
[98] Qu R T, Zhang Z J, Zhang P, Liu Z Q, Zhang Z F.Sci Rep, 2016; 6: 23359
[99] Zhang P, Li S X, Zhang Z F.Mater Sci Eng, 2011; A529: 62
[100] Wang Z, Qu R T, Scudino S, Sun B A, Prashanth K G, Louzguine-Luzgin D V, Chen M W, Zhang Z F, Eckert J.NPG Asia Mater, 2015; 7: e229
[101] Wang W H, Wang R J, Li F Y, Zhao D Q, Pan M X.Appl Phys Lett, 1999; 74: 1803
[102] Wang W H.J Appl Phys, 2006; 99: 093506
[103] Wang W H.Prog Mater Sci, 2012; 57: 487
[104] Liu Z Q, Wang R F, Qu R T, Wang W H, Zhang Z F.J Appl Phys, 2014; 115: 203513
[105] Liu Z Q, Zhang Z F.J Appl Phys, 2014; 115: 163505
[106] Liu Z Q, Zhang Z F.Appl Phys Lett, 2013; 103: 181909
[107] Liu Z Q, Zhang Z F.J Appl Phys, 2013; 114: 243519
[108] Chen H S, Wang T T.J Appl Phys, 1970; 41: 5338
[1] 徐士新, 余伟, 李舒笳, 王坤, 孙齐松. 预变形温度对纳米贝氏体相变动力学及组织的影响[J]. 金属学报, 2018, 54(8): 1113-1121.
[2] 钟茜婷, 王磊, 刘峰. Incoloy 028合金不连续动态再结晶中链状组织形成机理研究[J]. 金属学报, 2018, 54(7): 969-980.
[3] 刘晏宇, 毛萍莉, 刘正, 王峰, 王志. Schmid因子的理论计算及其在镁合金高速变形过程中的应用[J]. 金属学报, 2018, 54(6): 950-958.
[4] 苏煜森, 杨银辉, 曹建春, 白于良. 节Ni型2101双相不锈钢的高温热加工行为研究[J]. 金属学报, 2018, 54(4): 485-493.
[5] 李旭东, 毛萍莉, 刘晏宇, 刘正, 王志, 王峰. 高应变速率下Mg-3Zn-1Y镁合金的各向异性及变形机制[J]. 金属学报, 2018, 54(4): 557-565.
[6] 刘汉青, 何超, 黄志勇, 王清远. TC17合金超高周疲劳裂纹萌生机理[J]. 金属学报, 2017, 53(9): 1047-1054.
[7] 侯陇刚, 刘明荔, 王新东, 庄林忠, 张济山. 高强7050铝合金超低温大变形加工与组织、性能调控[J]. 金属学报, 2017, 53(9): 1075-1090.
[8] 丁雨田,高钰璧,豆正义,高鑫,刘德学,贾智. 形变诱导GH3625合金热挤压管材δ相的析出行为[J]. 金属学报, 2017, 53(6): 695-702.
[9] 张海,李时磊,刘刚,王艳丽. 热加工对Z3CN20-09M双相不锈钢组织及热老化冲击断裂行为的影响[J]. 金属学报, 2017, 53(5): 531-538.
[10] 郭舒,韩恩厚,王海涛,张志明,王俭秋. 核电站316L不锈钢弯头应力腐蚀行为的寿命预测[J]. 金属学报, 2017, 53(4): 455-464.
[11] 张晓嵩,徐勇,张士宏,程明,赵永好,唐巧生,丁月霞. 塑性变形及固溶处理对奥氏体不锈钢晶间腐蚀性能的协同作用研究[J]. 金属学报, 2017, 53(3): 335-344.
[12] 李安华, 张月明, 冯海波, 邹宁, 吕忠山, 邹旭杰, 李卫. 烧结Ce-Fe-B磁体的力学性能[J]. 金属学报, 2017, 53(11): 1478-1486.
[13] 陈剑虹, 曹睿. 焊缝金属解理断裂微观机理[J]. 金属学报, 2017, 53(11): 1427-1444.
[14] 陈连生, 李跃, 张明山, 田亚强, 郑小平, 徐勇, 张士宏. 两相区位错增殖对Mn元素配分及低碳钢贝氏体组织的影响[J]. 金属学报, 2017, 53(11): 1418-1426.
[15] 张明, 刘国权, 胡本芙. 镍基粉末高温合金热加工变形过程中显微组织不稳定性对热塑性的影响[J]. 金属学报, 2017, 53(11): 1469-1477.