Please wait a minute...
金属学报  2016, Vol. 52 Issue (10): 1153-1170    DOI: 10.11900/0412.1961.2016.00347
  论文 本期目录 | 过刊浏览 |
连续SiC纤维增强钛基复合材料研究进展*
王玉敏,张国兴,张旭,杨青,杨丽娜,杨锐()
中国科学院金属研究所, 沈阳 110016
ADVANCES IN SiC FIBER REINFORCED TITANIUM MATRIX COMPOSITES
Yumin WANG,Guoxing ZHANG,Xu ZHANG,Qing YANG,Lina YANG,Rui YANG
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(0 KB)   HTML
  
摘要: 

简述了近年来国内外SiC纤维增强钛基复合材料的发展进程和应用进展情况, 从纤维批量化生产、复合材料界面、主要力学性能、无损检测和结构件研制与考核5个方面对该类材料的研究进展进行了回顾. 在纤维批量化生产和复合材料结构件研制方面, 重点介绍了中国科学院金属研究所的研究工作, 并对该类复合材料未来的发展趋势进行了展望.

关键词 钛基复合材料SiC纤维界面反应无损检测整体叶环    
Abstract

SiC fibers can be used to reinforce a range of titanium base materials including alloys of the (α+β) type, metastable β type and near α type, as well intermetallic based γ-TiAl and orthorhombic Ti2AlNb. Along the fiber directions the obtained composites possess exceptional strength and stiffness, creating a large room and great flexibility for the design of higher performance components to be used in both aero engine and aircraft. The composites can be used by itself such as in sheet and bar form, or as a reinforcing module embedded in titanium alloy components, e.g., as a ring at the rim of a compressor disk. In this paper, recent progress in the development and application of SiC fiber reinforced titanium matrix composites was reviewed, emphasizing the work conducted at the Institute of Metal Research, Chinese Academy of Sciences. Five aspects of research were covered, the first is fiber manufacture and batch production, in which the influence of the chemical vapor deposition parameters on the quality of the W-core SiC fiber was discussed, and the relationship between the tungsten-SiC interface reaction and the high temperature stability of the fiber was described. The second part covers the composite interface, in which a detailed discussion was given to both the chemical and physical compatibility, followed by the design of different reaction layers between the SiC fiber and different titanium based matrixs. The mechanical property section presents tensile data of a range of composites developed in the authors' group and compares to literature reports where available, together with a comprehensive discussion of failure due to fatigue and creep. The fourth part deals with nondestructive testing, presenting new results of inspection on real size composite components using a combination of several techniques including X-ray, industrial CT and ultrasonic scanning. The limitations of each method were shown and the technical challenges were identified. The last part describes the development of structural parts and their verification testing. Titanium matrix composite sheets with [0/90] laminate prepared by both the foil-fiber-foil and matrix coated fiber methods were highlighted, followed by a description of the development of full size bladed ring and excess revolution testing. Future directions of research on SiC fiber reinforced titanium matrix composites were also discussed.

Key wordstitanium matrix composites    SiC fiber    interfacial reaction    non-destructive testing    bladed ring
收稿日期: 2016-08-01      出版日期: 2016-08-29
ZTFLH:     

引用本文:

王玉敏, 张国兴, 张旭, 杨青, 杨丽娜, 杨锐. 连续SiC纤维增强钛基复合材料研究进展*[J]. 金属学报, 2016, 52(10): 1153-1170.
Yumin WANG, Guoxing ZHANG, Xu ZHANG, Qing YANG, Lina YANG, Rui YANG. ADVANCES IN SiC FIBER REINFORCED TITANIUM MATRIX COMPOSITES. Acta Metall, 2016, 52(10): 1153-1170.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2016.00347      或      http://www.ams.org.cn/CN/Y2016/V52/I10/1153

图1  直流加热法和射频加热法SiC纤维生产示意图
图2  中国科学院金属研究所设计和建立的SiC纤维批量化生产装置(11套)
图3  中国科学院金属研究所生产的SiC纤维及其横截面形貌
图4  SiC纤维抗拉强度与W芯/SiC界面反应层厚度之间的关系(插图为Gambone与Gundel[17]有关Trimarc 1?纤维实验数据的总结)[16]
图5  不同温度拉伸后典型断口及W芯/SiC反应层区域的形貌[16]
No. Reaction No. Reaction
1 2Ti+SiC= TiSi+TiC 8 Ti+Si= TiSi
2 3Ti+2SiC= TiSi2+2TiC 9 Ti+2Si= TiSi2
3 8Ti+3SiC= Ti5Si3+3TiC 10 5Ti+3Si= Ti5Si3
4 4Ti+SiC= Ti3Si+TiC 11 3Ti+Si= Ti3Si
5 9Ti+4SiC= Ti5Si4+4TiC 12 5Ti+4Si= Ti5Si4
6 Ti+SiC= Si+TiC 13 3Ti+Si+C= Ti3SiC
7 Ti+C= TiC 14 3Ti+Si+2C= Ti3SiC2
表1  Ti-SiC热力学体系可能发生的化学反应
图6  G峰位置与SiC纤维拉力的关系[49]
Fiber Matrix Vf / % E / GPa σm / MPa σc / MPa
SCS-6 Ti-6-4 36 210 895~1250 1500~1750
SP-700 28 200 910~1380 1600
Ti-6242 35 195 900~1190 2140~2250
Ti-15-3 35~40 200~220 1150~1275 1300~1700
IMI834 39 220 1025~1145 2200~2500
Ti-1100 35 185 1000~1050 1700
Ti-25-10 35 210 900~1100 1300
IMR-2 Ti-6-4 40 200~210 895~1250 1750
Ti17 40 210~220 1105~1240 1900~2200
Ti-6246 40 210 1035~1240 1900~2200
Ti2AlNb 40 220~240 780~1440 1650
表2  国内外研制的几种钛基复合材料(TMCs)的典型室温拉伸性能[83-96]
图7  纤维裂纹的钝化和偏转[15]
图8  整体叶环超声C扫描检测图谱(中间部分为复合材料, 不连续处为纤维集中断裂)
图9  热压态板材超声显微镜成像和室温拉伸断口XRT技术成像
图10  不同工艺制备的[0/90]层合板的横截面纤维排布
图11  中国科学院金属研究所制备的不同规格和形状的板材照片
图12  热等静压致密化过程有限元计算结果与实验结果对比
图13  国内首件全尺寸复合材料整体叶环
图14  复合材料整体叶环超转实验件
图15  复合材料叶环强度实验件及破转后照片
[1] Yang R, Shi N L, Wang Y M, Lei J F, Zhang G X, Fu Y C, Li Y H, Zhang D Z.Titanium Ind Prog, 2005; 22(5): 32
[1] (杨锐, 石南林, 王玉敏, 雷家峰, 张国兴, 符跃春, 李艳华, 张德志. 钛工业进展, 2005; 22(5): 32)
[2] Guo Z X, Derby B.Prog Mater Sci, 1995; 39: 411
[3] Leyens C, Kocian F, Hausmann J, Kaysser W A.Aerosp Sci Technol, 2003; 7: 201
[4] Carrere N, Feyel F, Kruch S.Aerosp Sci Technol, 2003; 7: 307
[5] Khan T, Kuentzmann P.Mater Sci Forum, 2007; 546: 1171
[6] Vassel A, Pautonnier F, Raffestin M.ONERA, 2003; 2003: 112
[7] Hyde T H, Punyong K, Becker A A.J Mater: Des Appl, 2015; 229: 51
[8] Shi N L, Wang Y M, Feng J W, Yang R.Proc 2002 Symp on Space Materials, Special Committee, China Space Science Society, Tianjin: CSSR, 2002: 108
[8] (石南林, 王玉敏, 冯纪伟, 杨锐. 中国空间科学学会空间材料专业委员会2002学术交流会论文集, 天津: 中国空间科学学会, 2002: 108)
[9] Yang Y Q, Wen Q, Ma Z J, Lv X H, Chen Y.Rare Met Lett, 2004; 23(7): 22
[9] (杨延清, 文琼, 马志军, 吕祥鸿, 陈彦. 稀有金属快报, 2004; 23(7): 22)
[10] Huang H, Wen M, Chen D M, Li Z X, Huang X.J Aerona Mater, 2011; 31(S1): 135
[10] (黄浩, 文懋, 陈大明, 李臻熙, 黄旭. 航空材料学报, 2011; 31(增刊1): 135)
[11] Shi N L.Chin Pat, 90 1 06461.0, 1990
[11] (石南林. 中国专利, 90 1 06461.0, 1990)
[12] Shatwell R A, Dyos K L, Prentice C, Ward Y, Young R J.J Microsc, 2001; 201: 179
[13] Cheng T T, Jones I P, Shatwell R A, Doorbar P.Mater Sci Eng, 1999; A260: 139
[14] Giannuzzi L A, Lewinsohn C A, Bakis C E, Tressler R E.J Mater Res, 1998; 13: 1853
[15] Wang Y M.PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2005
[15] (王玉敏. 中国科学院金属研究所博士学位论文, 沈阳, 2005)
[16] Zhao C B.Master Thesis, University of Chinese Academy of Sciences, Beijing, 2015
[16] (赵传保. 中国科学院大学硕士学位论文, 北京, 2015)
[17] Gambone M L, Gundel D B.Key Eng Mater, 1996; 127: 1251
[18] Martineau P, Pailler R, Lahaye M, Naslain R.J Mater Sci, 1984; 19: 2749
[19] Zhu Y.PhD Dissertation, Northwestern Polytechnical University, Xi'an, 2003
[19] (朱艳. 西北工业大学博士学位论文, 西安, 2003)
[20] Bilba K, Manand J P, Cirpa Y L, Qenisset J M.Mater Sci Eng, 1991; A135: 141
[21] Naka M, Feng J C, Schuster J C.Metall Mater Trans, 1997; 28A: 1385
[22] Dybkov V I.J Mater Sci, 1986; 21: 3078
[23] Yang J M, Jeng S M.JOM, 1989; 41(11): 56
[24] Ashby M F.Acta Metall Mater, 1993; 41: 1313
[25] Ramamurty U, Dary F C, Zok F W.Acta Mater, 1996; 44: 3397
[26] Aghdam M M, Khojeh A.Compos Struct, 2003; 62: 285
[27] Douin J, Donnadieu P, Finel A, Dirras G F, Silvain J F.Composites, 2002; 33A: 1397
[28] Guo Z X, Surodola J F, Derby B, Ruiz C.Composites, 1994; 25: 563
[29] Mackey R A.Scr Metall Mater, 1990; 24: 167
[30] Johnson W S.Composites, 1993; 24: 187
[31] Upadhyaya D, Froes F H, Wood M J, Ward-Close C M. Titanium'95: Science and Technology. Birmingham, United Kingdom: Inst. of Materials, 1995: 2747
[32] Koss D A, Copley S M.Metall Trans, 1971; 2A: 1557
[33] Sun C T, Chen J L, Sha G T, Koop W E.J Compos Mater, 1990; 24: 1029
[34] Durodola J F, Derby B.Acta Metall Mater, 1994; 42: 1525
[35] Mikata Y, Taya M.J Compos Mater, 1985; 19: 554
[36] Warwick C M, Clyne T W.J Mater Sci, 1991; 26: 3817
[37] Vedula M, Pangborn R N, Queeney R A.Composites, 1988; 19: 55
[38] Vedula M, Pangborn R N, Queeney R A.Composites, 1988; 19: 133
[39] Haque S, Choy K L.Mater Sci Eng, 2000; A291: 97
[40] Zhang X.PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2013
[40] (张旭. 中国科学院金属研究所博士学位论文, 沈阳, 2013)
[41] An J M.Master Thesis, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2013
[41] (安江敏. 中国科学院金属研究所硕士学位论文, 沈阳, 2013)
[42] Kendig K L, Soboyejo W O, Miracle D B.Scr Mater, 1995; 32: 669
[43] Willemse P F, Mulder F M, Wei W, Rekveldt M T, Knight K S.Scr Mater, 2000; 42: 775
[44] Greerberg B A, Gornostirev Y N.Scr Metall, 1988; 22: 853
[45] Hanamura T, Uemori R, Tanina M.J Mater Res, 1988; 3: 656
[46] Pickard S M, Miracle D B, Majumdar B S, Kendig K L, Rothenflue L, Coker D.Acta Mater, 1995; 43: 3105
[47] Fang Q, Sidky P S, Hocking G M.Mater Sci Eng, 2000; A288: 293
[48] Ward Y, Young R J, Shatwell R A.Composites, 2002; 33A: 1409
[49] Xiao P, Wang Y M, Lei J F, Shi N L, Yang R.Rare Met Mater Eng, 2011; 40: 1540
[49] (肖鹏, 王玉敏, 雷家峰, 石南林, 杨锐. 稀有金属材料与工程, 2011; 40: 1540)
[50] Rangaswamy P, Prime M B, Daymond M, Bourke M A M, Clausen B, Choo H, Jayaraman N.Mater Sci Eng, 1999; A259: 209
[51] Xiao P.PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2010
[51] (肖鹏. 中国科学院金属研究所博士学位论文, 沈阳, 2010)
[52] Zhang X, Xiao P, Yang Q, Wang Y M, Lei J F, Yang R.Chin Pat, 201110101268.0, 2011
[52] (张旭, 肖鹏, 杨青, 王玉敏, 雷家峰, 杨锐.中国专利, 201110101268.0, 2011)
[53] Upadhyaya D, Wood M, Ward-Close C M, Tsakiropoulos P, Froes F H.JOM, 1994; 46(11): 62
[54] Baik K H, Grant P S.Scr Mater, 2001; 44: 607
[55] Fu Y C, Shi N L, Zhang D Z, Yang R.Mater Sci Eng, 2006; A426: 278
[56] Li Y H, Shi N L, Zhang D Z, Yang R.J Mater Sci Technol, 2005; 21: 657
[57] Wang Y M, Fu Y C, Shi N L, Zhang D Z, Yang R.Acta Metall Sin, 2004; 40: 359
[57] (王玉敏, 符跃春, 石南林, 张德志, 杨锐. 金属学报, 2004; 40: 359)
[58] Guo C Y, Zhang C B, He L L, Zhang G X, Lei J F.Acta Metall Sin, 2006; 42: 792
[58] (郭长友, 张彩碚, 贺连龙, 张国兴, 雷家峰. 金属学报, 2006; 42: 792)
[59] Zhang G X, Kang Q, Li G P, Shi N L, Li D.Acta Metall Sin, 2003; 39: 329
[59] (张国兴, 康强, 李阁平, 石南林, 李东. 金属学报, 2003; 39: 329)
[60] Choo H, Rangaswamy P, Bourke M A M.Scr Mater, 2000; 42: 175
[61] Dudek H J, Borath R, Leucht R, Kaysser W A.J Mater Sci, 1997; 3: 5355
[62] Das G.Metall Mater Trans, 1990; 21A: 1571
[63] Yang Y Q, Zhu Y, Ma Z J, Chen Y.Scr Mater, 2004; 51: 385
[64] Jeng S M, Yang J M, Yang C J.Mater Sci Eng, 1991; A138: 155
[65] Goo G K, Graves J A, Mecartney M L.Scr Metall Mater, 1992; 26: 1043
[66] Zhang X, Wang Y M, Lei J F, Yang R.Acta Metall Sin, 2012; 48: 1306
[66] (张旭, 王玉敏, 雷家峰, 杨锐. 金属学报, 2012; 48: 1306)
[67] Zhang X, Yang Q, Wang Y M, Lei J F, Yang R.In: Zhou L, Chang H, Lu Y F, Xu D S eds., Proc 12th World Conference on Titanium, Beijing: Science Press, 2011: 1545
[68] Hall I W, Lirn J L, Rizza J.J Mater Sci Lett, 1991; 10: 263
[69] Baumann S P, Brindley P K, Smith S D.Metall Trans, 1990; 21A: 1559
[70] Jones C, Kiely C J, Wang S S.J Mater Res, 1989; 4: 327
[71] Yang K, Guo Z X, Edmonds D V.Scr Metall Mater, 1992; 27: 1021
[72] Yang K, Guo Z X, Edmonds D V.Scr Metall Mater, 1992; 27: 1695
[73] Guo Z X, Li J H, Yang K, Derby B.Composites, 1994; 25: 881
[74] Zhou C H, Yang K, Lu Y X.Acta Metall Sin (Engl Lett), 1998; 11: 307
[75] Favre J P, Vassel A, Laclau C.Composites, 1994; 25: 482
[76] Kerans R J, Parthasarathy T A.J Am Ceram Soc, 1991; 74: 1585
[77] Dollar A, Steif P S, Wang Y C, Hui C Y.Int J Solids Struct, 1993; 30: 1313
[78] Petitcorps Y L, Pailler R, Naslain R.Compos Sci Technol, 1989; 35: 207
[79] Jeng S M, Yang J M, Yang C J.Mater Sci Eng, 1991; A138: 169
[80] Eldridge J I, Ebihara B T.J Mater Res, 1994; 9: 1035
[81] Bechel V T, Sottos N R.J Mater Sci, 1999; 34: 3471
[82] Yang C J, Jeng S M, Yang J M.Scr Metall Mater, 1990; 24: 469
[83] Jeng S M, Alassoeur J P, Yang C J.Mater Sci Eng, 1991; A148: 67
[84] Garc??a-Leiva M C, Oca?a I, Mart??n-Meizoso A, Mart??nez-Esnaola J M, Marqués V, Heredero F.Eng Fract Mecha, 2003; 70: 2137
[85] Yamazaki Y, Ikada A, Okazaki M.Key Eng Mater, 2004; 261: 1091
[86] Bettge D, Günther B, Wedell W, Portella P D, Hemptenmacher J, Peters P W M. Symposium Verbundwerkstoffe und Werkstoffverbunde, Wien, ?sterreich, 2003
[87] Bettge D, Gunther B, Wedell W, Portella P D, Hemptenmacher J, Peters P W M, Skrotzki B. Mater Sci Eng, 2007; A452-453: 536
[88] Robertson D D, Mall S.Proc Eleventh Int Conf on Composite Materials, Queensland, Australia, 1997: 365
[89] Calcaterra J R, Mall S, Coghlan S C.Metall Mater Trans, 1999; 30: 307
[90] Nguyen T H B, Jeng S M, Yang J M.Mater Sci Eng, 1994; A183: 1
[91] Ramamurty U.Compos Sci Technol, 2005; 65: 1815
[92] Fukushima A, Fujiwara C, Kagawa Y, Masuda C.Mater Sci Eng, 2000; A276: 243
[93] Peters P W M, Xia Z, Hemptenmacher J, Assler H.Composites, 2001; 32A: 561
[94] Hemptenmacher J, Assler H, Kumpfert J, Dudek H J.Sixth Annu Int Conf on Composites Engineering (ICCE/6), Orlando, Florida: International Conference on Composites Engineering, 1999: 313
[95] Gundel D B, Wawner F E.Composites, 1997; 57: 471
[96] Boyer R, Collings E W, Welsch G.Materials Properties Handbook: Titanium Alloys. ASM International, 1994: 1
[97] Suzuki T, Umehara H, Hayashi R.J Mater Res, 1993; 8: 2492
[98] Smith P R, Froes F H.J Met, 1984; 36: 19
[99] Ochial S, Osamura K.Metall Trans, 1990; 21A: 971
[100] Kagawa Y, Fujita T, Okura A.Acta Metall Mater, 1994; 42: 3019
[101] Curtin W A.J Am Ceram Soc, 1991; 74: 2837
[102] Curtin W A.Composites, 1993; 24: 98
[103] Zweben C.AIAA J, 1968; 6: 2325
[104] Zweben C, Rosen B W.J Mech Phys Solids, 1970; 18: 189
[105] Batdorf S B.J Reinf Plast Compos, 1982; 1: 153
[106] Batdorf S B, Ghaffarian R.J Reinf Plast Compos, 1982; 1: 165
[107] González C, Llorca J.Acta Mater, 2001; 49: 3505
[108] Wu X, Cooper C, Bowen P.Metall Mater Trans, 2001; 32A: 1851
[109] Naseem K, Yang Y Q, Luo X, Huang B, Feng G H.Mater Sci Eng, 2011; A528: 4507
[110] Peters P W M, Hemptenmacher J.Composites, 2002; 33A: 1373
[111] Gálvez F, González C, Poza P, LLorca J.Scr Mater, 2001; 44: 2667
[112] Weber C H, Chen X, Connell S J, Zok F W.Acta Metall Mater, 1994; 42: 3443
[113] Zhang X, Wang Y M, Yang Q, Lei J F, Yang R.Acta Metall Sin, 2015; 51: 1025
[113] (张旭, 王玉敏, 杨青, 雷家峰, 杨锐. 金属学报, 2015; 51: 1025)
[114] Zhang X, Yang Q, Wang Y M, Lei J F, Yang R.Chin J Nonferrous Met, 2010; 20(spec 1): 203
[114] (张旭, 杨青, 王玉敏, 雷家峰, 杨锐. 中国有色金属学报, 2010; 20(专辑 1): 203)
[115] Barney C, Beevers C J, Bowen P.Composites, 1993; 24: 229
[116] Rauchs G, Thomason P F, Withers P J.Comput Mater Sci, 2002; 25: 166
[117] Brett R L, Cotterill P J, Bowen P.Int J Fatigue, 1996; 18: 1
[118] Ibbotson A R, Beevers C J, Bowen P.In: Bailon J P, Dickson J eds., Int Fatigue Series-IFS, Vol. 1-3, Montreal, Canada: Engineering Materials Advisory Services LTD, 1993: 1079
[119] Cotterill P J, Bowen P.Composites, 1993; 24: 214
[120] Warrier S G, Maruyama B, Majumdar B S, Miracle D B.Mater Sci Eng, 1999; A259: 189
[121] Rauchs G, J Withers P.Int J Fatigue, 2002; 24: 1205
[122] Connell S J, Zok F W.Acta Mater, 1997; 45: 5203
[123] Hutson A, John R, Jira J.Scr Mater, 1999; 40: 529
[124] Ananth C R, Chandra N.Composites, 1996; 27A: 805
[125] Cotterill P J, Bowen P.Mater Sci Technol, 1996; 12: 523
[126] Jones C, Kiely C J, Wang S S.J Mater Res, 1990; 5: 1435
[127] Hung Y C, Withers P J.Acta Mater, 2012; 60: 958
[128] Covey S J, Lerch B A, Jayaraman N.Mater Sci Eng, 1995; A200: 68
[129] Xia Z H, Peters P W M, Dudek H J.Composites, 2000; 31A: 1031
[130] Thomas M P, Howard G, Pather R, Brown M R, Tranter P H.Int J Fatigue, 2001; 23: 851
[131] Peters P W M, Hemptenmacher J, Weber K, Assler H.J Comp Technol Res, 2002; 24: 246
[132] Jeng S M, Yang J M.Mater Sci Eng, 1993; A171: 65
[133] Schwenker S W, Eylon D.Metall Mater Trans, 1996; 27A: 4193
[134] Hemptenmacher J, Peters P W M, Weber K.Adv Eng Mater, 2004; 6: 129
[135] Carrere N, Martin E, Coutand B.Composites, 2003; 34A: 1065
[136] Gambone M L, Rosenberger A H.Acta Mater, 1999; 47: 1723
[137] Thomas M P.Mater Sci Eng, 2001; A303: 30
[138] Zhang X, Wang Y M, Cai G X, Zhang W, Yang R.Chin Pat, 201510247358.9, 2015
[138] (张旭, 王玉敏, 蔡桂喜, 张薇, 杨锐. 中国专利, 201510247358.9, 2015)
[139] Zhang X, Xiao P, Yang Q, Wang Y M, Lei J F, Yang R.Chin Pat, 201110241083X, 2011
[139] (张旭, 肖鹏, 杨青, 王玉敏, 雷家峰, 杨锐. 中国专利, 201110241083X, 2011)
[140] Wang Y M, Shi N L, Yang R.Chin Pat, 200510117833.7, 2005
[140] (王玉敏, 石南林, 杨锐. 中国专利, 200510117833.7, 2005)
[1] 赵宁,邓建峰,钟毅,殷录桥. 热迁移下Ni/Sn-xCu/Ni微焊点钎焊界面金属间化合物的演变[J]. 金属学报, 2017, 53(7): 861-868.
[2] 张志杰,黄明亮. Cu/Sn-52In/Cu微焊点液-固电迁移行为研究[J]. 金属学报, 2017, 53(5): 592-600.
[3] 靳鹏,隋然,李富祥,俞伟元,林巧力. 熔融6061/4043铝合金在TC4钛合金表面的反应润湿[J]. 金属学报, 2017, 53(4): 479-486.
[4] 吴铭方,刘飞,王凤江,乔岩欣. 陶瓷基复合材料辅助脉冲电流液相扩散连接的界面反应及接头强化机制[J]. 金属学报, 2015, 51(9): 1129-1135.
[5] 张旭, 王玉敏, 杨青, 雷家峰, 杨锐. SiCf/TC17复合材料拉伸行为研究[J]. 金属学报, 2015, 51(9): 1025-1037.
[6] 陈晓燕,金喆,白雪峰,周亦胄,金涛,孙晓峰. C对一种镍基高温合金与陶瓷型壳界面反应及润湿性的影响*[J]. 金属学报, 2015, 51(7): 853-858.
[7] 黄明亮, 张志杰, 冯晓飞, 赵宁. 液-固电迁移Ni/Sn-9Zn/Ni焊点反极性效应研究[J]. 金属学报, 2015, 51(1): 93-99.
[8] 陈晓燕, 周亦胄, 张朝威, 金涛, 孙晓峰. Hf对一种高温合金与陶瓷材料润湿性及界面反应的影响*[J]. 金属学报, 2014, 50(8): 1019-1024.
[9] 柯常波, 周敏波, 张新平. Sn/Cu互连体系界面金属间化合物Cu6Sn5演化和生长动力学的相场法模拟*[J]. 金属学报, 2014, 50(3): 294-304.
[10] 谭向虎,单际国,任家烈. Cr层对低碳钢/CFRP激光连接接头剪切强度及界面结合特征的影响[J]. 金属学报, 2013, 49(6): 751-756.
[11] 周敏波,马骁,张新平. BGA结构Sn-3.0Ag-0.5Cu/Cu焊点低温回流时界面反应和IMC生长行为[J]. 金属学报, 2013, 49(3): 341-350.
[12] 张彦坡,任丁,林黎蔚,杨斌,王珊玲,刘波,徐可为. Cu/Cu(Ge, Zr)/SiO2/Si多层膜界面可控反应及热稳定性研究[J]. 金属学报, 2013, 49(10): 1264-1268.
[13] 黄明亮,周少明,陈雷达,张志杰. Ni-P消耗对焊点电迁移失效机理的影响[J]. 金属学报, 2013, 49(1): 81-86.
[14] 王青亮,赵洪生,沈利,栗争光,赵九洲. KF-AlF3系溶剂组成对KBF4与Al熔体界面反应的影响[J]. 金属学报, 2012, 48(6): 739-743.
[15] 黄明亮 陈雷达 周少明. 电迁移对Ni/Sn3.0Ag0.5Cu/Cu焊点界面反应的影响[J]. 金属学报, 2012, 48(3): 321-328.