Please wait a minute...
金属学报  2016, Vol. 52 Issue (10): 1222-1238    DOI: 10.11900/0412.1961.2016.00346
  本期目录 | 过刊浏览 |
搅拌摩擦焊接与加工研究进展*
薛鹏,张星星,吴利辉,马宗义()
中国科学院金属研究所沈阳材料科学国家(联合)实验室, 沈阳 110016
RESEARCH PROGRESS ON FRICTION STIR WELDING AND PROCESSING
Peng XUE,Xingxing ZHANG,Lihui WU,Zongyi MA()
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(10599 KB)   HTML
  
摘要: 

本文结合本研究组的研究结果, 简述了异种材料、高熔点材料、铝基复合材料的焊接, 以及温度场模拟、复合材料/超细晶材料制备等搅拌摩擦焊接与加工领域几个热点问题的研究进展. 分别对影响异种金属材料焊接的关键因素与界面结合机理, 高熔点材料(钢、钛合金)焊接过程中的组织演变及焊接工具的发展, 铝基复合材料接头组织性能与工具磨损, 温度场热源模型及温度场的影响因素与变化规律, 搅拌摩擦加工复合材料及超细晶材料的组织特点及性能等内容进行了总结与评述. 同时, 对未来相关领域的研究方向进行了展望.

关键词 搅拌摩擦焊接搅拌摩擦加工异种材料高熔点材料铝基复合材料温度场模拟    
Abstract

This paper simply introduced the research progress in friction stir welding (FSW) of dissimilar materials, high melting point materials and Al matrix composites, thermal-field simulation, and friction stir processing (FSP), especially based on research results of the authors. Some hotspots like the key factor of FSW dissimilar materials and bonding mechanism on interface, microstructure evolution during FSW of steel and Ti alloys and tool development, microstructure and properties of FSW Al matrix composite joints and tool wear, heat resource model of thermal-field simulation and effect of FSW parameters on thermal-field, microstructure and properties of nano-composites and ultrafine-grained materials prepared by FSP, were summarized and discussed. At the same time, the further research and development direction in FSW are suggested.

Key wordsfriction stir welding    friction stir processing    dissimilar material    high melting point material    Al matrix composite    thermal-field simulation
收稿日期: 2016-08-01      出版日期: 2016-08-30
:     
基金资助:* 国家自然科学基金项目51301178和51331008资助

引用本文:

薛鹏, 张星星, 吴利辉, 马宗义. 搅拌摩擦焊接与加工研究进展*[J]. 金属学报, 2016, 52(10): 1222-1238.
Peng XUE, Xingxing ZHANG, Lihui WU, Zongyi MA. RESEARCH PROGRESS ON FRICTION STIR WELDING AND PROCESSING. Acta Metall Sin, 2016, 52(10): 1222-1238.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2016.00346      或      http://www.ams.org.cn/CN/Y2016/V52/I10/1222

图1  搅拌摩擦焊(FSW) Al-Cu接头宏观形貌及界面微观组织[24]
图2  被焊材料位置对FSW Mg-钢搭接接头形貌影响[26]
图3  7075铝合金与锆基非晶FSW接头宏观形貌及界面处TEM像[29]
图4  S70C高碳钢不同参数下FSW接头焊核区SEM像[39]
图5  高氮不锈钢FSW接头宏观组织与母材、焊核区上部与下部EBSD微观组织[50]
图6  TC4合金FSW焊核区的超塑性行为及其组织特性[67,77]
图7  聚晶立方氮化硼(PCBN)和W-Re合金搅拌头形貌[80]
图8  20%Al2O3/6061Al (体积分数)复合材料FSW后焊接工具磨损形貌[85]
图9  17%SiC/2009Al 复合材料FSW接头硬度分布[91]
图10  500 r/min时FSW接头上表面和下表面温度循环历史实验及模拟结果图[106]
图11  不同FSW参数下预测的370 ℃等温线位置[109]与文献[110]中实验拉伸断裂位置的对比
图12  搅拌摩擦加工(FSP)+轧制CNT/2009Al复合材料TEM像[123]
图13  FSP超细晶纯Cu和Cu-Al合金的拉伸曲线和性能对比 [132-134]
图14  粗晶和FSP超细晶纯Cu疲劳变形后表面损伤形貌[135]
[1] Thomas W M, Nicholas E D, Needham J C.UK Pat, 9125978.8, 1991
[2] David S A.Science, 1992; 257: 497
[3] Sato Y.J Jpn Weld Soc, 2015; 84: 573
[4] Mishra R S, Ma Z Y.Mater Sci Eng, 2005; R50: 1
[5] Ma Z Y.Metall Mater Trans, 2008; 39A: 642
[6] Kumar N, Yuan W, Mishra R S.Friction Stir Welding of Dissimilar Alloys and Materials. Oxford: Elsiver Inc., 2015: 1
[7] Okamoto H.Desk Handbook Phase Diagrams for Binary Alloys. Ohio: ASM International, 2000: 36
[8] Fu B L, Qin G L, Li F, Meng X M, Zhang J Z, Wu C S.J Mater Process Technol, 2015; 218: 38
[9] Chen Y H, Xie J L, Ge J W, Cao W M.Netshape Form Eng, 2015; 7(5): 25
[9] (陈玉华, 谢吉林, 戈军委, 曹文明. 精密成形工程, 2015; 7(5): 25)
[10] Lee K, Kwon E P.Trans Nonferrous Met Soc China, 2014; 24: 2374
[11] Buffa G, Baffari D, Caro A D, Fratini L.Sci Technol Weld Join, 2015; 20: 271
[12] Kostka A, Coelho R S, dos Santos J.Scr Mater, 2009; 60: 953
[13] Zhao Y, Lu Z P, Yan K, Huang L Z.Mater Des, 2015; 65: 675
[14] Mofid M A, Abdollah-Zadeh A, Ghaini F M, Gür C H.Metall Mater Trans, 2012; 43A: 5106
[15] Xu R Z.Postdoctoral Report, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2016
[15] (徐荣正. 中国科学院金属研究所博士后出站报告, 沈阳, 2016)
[16] Chang W S, Rajesh S R, Chun C K.J Mater Sci Technol, 2011; 27: 199
[17] Liu X, Lan S H, Ni J.J Mater Process Technol, 2015; 219: 112
[18] Xiong J T, Li J L, Qian J W, Zhang F S, Huang W D.Sci Technol Weld Join, 2012; 17: 196
[19] Wu A P, Song Z H, Nakata K, Liao J S, Zhou L.Mater Des, 2015; 71: 85
[20] Li B, Zhang Z H, Shen Y F, Hu W Y, Luo L.Mater Des, 2014; 53: 838
[21] Liu P, Shi Q Y, Wang W, Wang X, Zhang Z L.Mater Lett, 2008; 62: 4106
[22] Xue P, Xiao B L, Ni D R, Ma Z Y.Mater Sci Eng, 2010; A527: 5723
[23] Xue P, Ni D R, Wang D, Xiao B L, Ma Z Y.Mater Sci Eng, 2011; A528: 4683
[24] Xue P, Xiao B L, Ma Z Y.Metall Mater Trans, 2015; 46A: 3091
[25] Chen Y C, Nakata K.Sci Technol Weld Join, 2010; 15: 293
[26] Zhang Z K, Wang X J, Wang P C, Zhao G.Trans Nonferrous Met Soc China, 2014; 24: 1709
[27] Wang X J, Li W H, Zhao G.Sci Technol Weld Join, 2014; 18: 1063
[28] Wei Y N, Li J L, Xiong J T, Huang F, Zhang F S.Mater Des, 2012; 33: 111
[29] Wang D, Xiao B L, Ma Z Y, Zhang H F.Scr Mater, 2009; 60: 112
[30] Sun Y F, Ji Y S, Fujii H, Nakata K, Nogi K.Mater Sci Eng, 2010; A527: 3427
[31] Sun Y F, Fujii H.Intermetallics, 2013; 33: 113
[32] Liu F C, Nakata K, Liao J, Hirota S, Fukui H.Sci Technol Weld Join, 2014; 19: 578
[33] Liu F C, Liao J, Nakata K.Mater Des, 2014; 54: 236
[34] Goushegir S M, dos Santos J F, Amancio-Filho S T.Mater Des, 2014; 54: 196.
[35] Liu F C, Liao J, Gao Y, Nakata K.Sci Technol Weld Join, 2015; 20: 291
[36] Matsushita M, Kitani Y, Ikeda R, Endo S, Fujii H.ISIJ Int, 2012; 52: 1335
[37] Fujii H, Cui L, Tsuji N, Maeda M, Nakata K, Nogi K.Mater Sci Eng, 2006; A429: 50
[38] Ozekcin A, Jin H W, Koo J Y, Bangaru N V, Ayer R, Vaughn G, Steel R, Packer S.Int J Offshore Polar Eng, 2004; 14: 284
[39] Cui L, Fujii H, Tsuji N, Nogi K.Scr Mater, 2007; 56: 637
[40] Chung Y D, Fujii H, Ueji R, Tsuji N.Scr Mater, 2010; 63: 223
[41] Matsushita M, Kitani Y, Ikeda R, Ono M, Fujii H, Chung Y D.Sci Technol Weld Join, 2011; 16: 181
[42] Ghosh M, Kumar K, Mishra R S.Scr Mater, 2010; 63: 851
[43] Ghosh M, Kumar K, Mishra R S.Mater Sci Eng, 2011; A528: 8111
[44] Xue P, Xiao B L, Wang W G, Zhang Q, Wang D, Wang Q Z, Ma Z Y.Mater Sci Eng, 2013; A575: 30
[45] Xue P, Li W D, Wang D, Wang W G, Xiao B L, Ma Z Y.Mater Sci Eng, 2016; A670: 153
[46] Xue P, Ma Z Y, Komizo Y, Fujii H.Mater Lett, 2016; 162: 161
[47] Li Y J, Fu R D. J Mech Eng, 2015; 51: 1
[47] (李艺君, 付瑞东. 机械工程学报, 2015; 51: 1)
[48] Nandan R, Roy G G, Lienert T J, DebRoy T.Sci Technol Weld Join, 2006; 11: 526
[49] Sato Y S, Nelson T W, Sterling C J.Acta Mater, 2005; 53: 637
[50] Du D X, Fu R D, Li Y J, Jing L, Ren Y B, Yang K.Mater Sci Eng, 2014; A616: 246
[51] Miyano Y, Fujii H, Sun Y, Katada Y, Kuroda S, Kamiya O.Mater Sci Eng, 2011; A528: 2917
[52] Park S H C, Sato Y S, Kokawa H, Okamoto K, Hirano S, Inagaki M.Scr Mater, 2004; 51: 101
[53] Sato Y S, Harayama N, Kokawa H, Inoue H, Tadokoro Y, Tsuge S.Sci Technol Weld Join, 2009; 14: 202
[54] Cho H H, Han H N, Hong S T, Park J H, Kwon Y J, Kim S H, Steel R J.Mater Sci Eng, 2011; A528: 2889
[55] Han J, Li H J, Zhu Z X, Barbaro F, Jiang L Z, Xu H G, Ma L.Mater Des, 2014; 63: 238
[56] Saeid T, Abdollah-zadeh A, Shibayanagi T, Ikeuchi K, Assadi H.Mater Sci Eng, 2010; A527: 6484
[57] Ishikawa T, Fujii H, Genchi K, Iwaki S, Matsuoka S, Nogi K.ISIJ Int, 2009; 49: 897
[58] Sarlak H, Atapour M, Esmailzadeh M.Mater Des, 2015; 66: 209
[59] Li H B, Jiang Z H, Feng H, Zhang S C, Li L, Han P D, Misra R D K, Li J Z.Mater Des, 2015; 84: 291
[60] Zhang H, Wang D, Xue P, Wu L H, Ni D R, Ma Z Y,Mater Des, 2016; 110: 802
[61] Edwards P, Ramulu M.Sci Technol Weld Join, 2009; 14: 669
[62] Zhang Y, Sato Y S, Kokawa H, Park S H C, Hirano S.Mater Sci Eng, 2008; A485: 448
[63] Sanders D G, Ramulu M, Edwards P D, Cantrell A.J Mater Eng Perform, 2010; 19: 503
[64] Pilchak A L, Tang W, Sahiner H, Reynolds A P, Williams J C.Metall Mater Trans, 2011; 42A: 745
[65] Davies P S, Wynne B P, Rainforth W M, Thomas M J, Threadgill P L.Metall Mater Trans, 2011; 42A: 2278
[66] Liu H J, Zhou L, Liu Q W.Mater Des, 2010; 31: 1650
[67] Wu L H, Xiao B L, Ni D R, Ma Z Y, Li X H, Fu M J, Zeng Y S.Scr Mater, 2015; 98: 44
[68] Edwards P D, Ramulu M.J Mater Process Technol, 2015; 218: 107
[69] Nimer S, Wolk J, Zupan M.Acta Mater, 2013; 61: 3050
[70] Fonda R W, Knipling K E.Acta Mater, 2010; 58: 6452
[71] Mironov S, Sato Y S, Kokawa H.Acta Mater, 2009; 57: 4519
[72] Fratini L, Micari F, Buffa G, Ruisi V F.CIRP Ann Manuf Technol, 2010; 59: 271
[73] Wu L H, Wang D, Xiao B L, Ma Z Y. Scr Mater, 2014; 78-79: 17
[74] Mironov S, Zhang Y, Sato Y S, Kokawa H.Scr Mater, 2008; 59: 27
[75] Pilchak A L, Juhas M C, Williams J C.Metall Mater Trans, 2007; 38A: 401
[76] Pilchak A L, Williams J C.Metall Mater Trans, 2011; 42A: 773
[77] Wu L H, Xue P, Xiao B L, Ma Z Y.Scr Mater, 2016; 122: 26
[78] Rai R, De A, Bhadeshia H K D H, DebRoy T.Sci Technol Weld Join, 2011; 16: 325
[79] Gu Y H, Jiao X D, Zhou C F, Gao H, Che J T.Weld Technol, 2015; 44: 1
[79] (顾艳红, 焦向东, 周灿丰, 高辉, 车俊铁. 焊接技术, 2015; 44: 1)
[80] Barnes S J, Bhatti A R, Steuwer A, Johnson R, Altenkirch J, Withers P J.Metall Mater Trans, 2012; 43A: 2342
[81] Miyazawa T, Iwamoto Y, Maruko T, Fujii H.Sci Technol Weld Join, 2012; 17: 207
[82] Sato Y S, Miyake M, Susukida S, Kokawa H, Omori T, Ishida K, Imano S, Sugimoto I, Park S H C, Hirano S. In: Mishra R S, Mahoney M W, Sato Y, Hovanski Y eds., Friction Stir Welding and Processing VIII. New Jersey: Sons Inc., 2015: 39
[83] Tjiong S C, Ma Z Y.Mater Sci Eng, 2000; R29: 49
[84] Wang D, Xiao B L, Ni D R, Ma Z Y.Acta Metall Sin (Eng Lett), 2014; 27: 816
[85] Prado R A, Murr L E, Soto K F, McClure J C.Mater Sci Eng, 2003; A349: 156
[86] Nelson T W, Zhang H, Haynes T.In: Proc 2nd Symp on Friction Stir Welding, Sweden: Gothenburg, 2000
[87] Shindo D J, Rivera A R, Murr L E.J Mater Sci, 2002; 37: 4999
[88] Feng A H, Ma Z Y.Scr Mater, 2007; 57: 1113
[89] Ceschini L, Boromei I, Minak G, Morri A, Tarterini F.Compos Sci Technol, 2007; 67: 605
[90] Liu H J, Feng J C, Fujii H, Nogi K.Int J Mach Tool Manuf, 2005; 45: 1635
[91] Wang D, Wang Q Z, Xiao B L, Ma Z Y.Mater Sci Eng, 2014; A589: 271
[92] Uzun H.Mater Des, 2007; 28: 1440
[93] Feng A H, Xiao B L, Ma Z Y.Compos Sci Technol, 2008; 68: 2141
[94] Marzoli L M, Strombeck A V, Dos Santos J F, Gambaro C, Volpone L M.Compos Sci Technol, 2006; 66: 363
[95] Nami H, Adgi H, Sharifitabar M, Shamabadi H.Mater Des, 2011; 32: 976
[96] Chen X G, da Silva M, Gougeon P, St-Georges L.Mater Sci Eng, 2009; A518: 174
[97] Cavaliere P, Cerri E, Marzoli L, Santos J D.Appl Compos Mater, 2004; 2: 247
[98] Arbegast W J, Hartley P J.In: Vitek J M ed., Proc 5th Int Conf on Trend in Welding Research, Pine Mountain, Georgia: ASM Int, 1998: 541
[99] Roy G G, Nandan R, DebRoy T.Sci Technol Weld Join, 2006; 11: 606
[100] Arora A, DebRoy T, Bhadeshia H K D H.Acta Mater, 2011; 59: 2020
[101] Frigaard ?, Grong ?, Midling O T.Metall Mater Trans, 2001; 32A: 1189
[102] Schmidt H, Hattel J, Wert J.Modell Simul Mater Sci Eng, 2004; 12: 143
[103] Nandan R, Roy G G, DebRoy T.Metall Mater Trans, 2006; 37A: 1247
[104] Nandan R, Roy G G, Lienert T J, DebRoy T.Acta Mater, 2007; 55: 883
[105] Zhang Z, Zhang H W.J Mater Process Technol, 2009; 209: 241
[106] Zhu X K, Chao Y J.J Mater Process Technol, 2004; 146: 263
[107] Zhang C B, Zhu X J, Li L J.In: 87th FABTECH Int and AWS Welding Show Prof Program, Atlanta, GA, 2006: 151
[108] Zhang X X, Xiao B L, Ma Z Y.Metall Mater Trans, 2011; 42A: 3218
[109] Zhang X X, Xiao B L, Ma Z Y.Metall Mater Trans, 2011; 42A: 3229
[110] Liu F C, Ma Z Y.Metall Mater Trans, 2008; 39A: 2378
[111] You G L, Ho N J, Kao P W.Mater Lett, 2013; 90: 26
[112] Lee I S, Kao P W, Ho N J.Intermetallics, 2008; 16: 1104
[113] Zhang Q, Xiao B L, Wang Q Z, Ma Z Y.Metall Mater Trans, 2014; 45A: 2776
[114] Zhang Q, Xiao B L, Ma Z Y.Intermetallics, 2013; 40: 36
[115] Zhang Q, Xiao B L, Wang W G, Ma Z Y.Acta Mater, 2012; 60: 7090
[116] Zhang Q, Xiao B L, Ma Z Y.Mater Chem Phys, 2013; 139: 596
[117] Jeon C H, Jeong Y H, Seo J J, Tien H N, Hong S T, Yum Y J, Hur S H, Lee K J.Int J Preci Eng Manuf, 2014; 15: 1235
[118] Liu Q, Ke L M, Liu F C, Mao Y Q.Hot Work Technol, 2016; 45(2): 1
[118] (刘强, 柯黎明, 刘奋成, 毛育青. 热加工工艺, 2016; 45(2): 1)
[119] Morisada Y, Fujii H, Nagaoka T, Nogi K, Fukusumi M.Composite, 2007; 38A: 2097
[120] Liu Z Y, Xiao B L, Wang W G, Ma Z Y.Acta Metall Sin (Eng Lett), 2014; 27: 901
[121] Liu Z Y, Xiao B L, Wang W G, Ma Z Y.Carbon, 2014; 69: 264
[122] Liu Z Y, Xiao B L, Wang W G, Ma Z Y.Carbon, 2012; 50: 1843
[123] Liu Z Y, Xiao B L, Wang W G, Ma Z Y.Carbon, 2013; 62: 35
[124] Liu Z Y, Xiao B L, Wang W G, Ma Z Y.J Mater Sci Technol, 2014; 30: 649
[125] Valiev R.Nat Mater, 2004; 3: 511
[126] Tao N R, Lu K.Acta Metall Sin, 2014; 50: 141
[126] (陶乃镕, 卢柯. 金属学报, 2014; 50: 141)
[127] Su J Q, Nelson T W, Sterling C J.In: Shaw L L, Suryanarayana C, Mishra R S eds., Symp on Processing and Properties of Structural Materials, 2013 TMS Fall Meeting, Chigago: Processing and Properties of Structural Nanomaterials, 2003: 181
[128] Xue P, Xiao B L, Ma Z Y.J Mater Sci Technol, 2013; 29: 1111
[129] Xue P, Xiao B L, Ma Z Y.Mater Des, 2014; 56: 848
[130] Xue P, Komizo Y, Ueji R, Fujii H.Mater Sci Eng, 2014; A606: 322
[131] Xue P, Xiao B L, Ma Z Y.Acta Metall Sin, 2014; 50: 245
[131] (薛鹏, 肖伯律, 马宗义. 金属学报, 2014; 50: 245)
[132] Xue P, Xiao B L, Ma Z Y.Scr Mater, 2013; 68: 751
[133] Xue P, Xiao B L, Ma Z Y.Mater Sci Eng, 2012; A532: 106
[134] Xue P, Wang B B, Chen F F, Wang W G, Xiao B L, Ma Z Y.Mater Charact, 2016; 121: 187
[135] Xue P, Huang Z Y, Wang B B, Tian Y Z, Wang W G, Xiao B L, Ma Z Y.Sci China Mater, 2016; 59: 531
[136] Wang Y M, Chen M W, Zhou F H, Ma E.Nature, 2002; 419: 912
[1] 陈树君. 基于中间过渡层的 5A06/0Cr18Ni10Ti 气化冲击焊接工艺研究[J]. 金属学报, 2019, 55(8): 1041-1048.
[2] 吕钊钊,祖宇飞,沙建军,鲜玉强,张伟,崔鼎,严从林. 含Cu界面层碳纤维增强铝基复合材料制备工艺及其力学性能研究[J]. 金属学报, 2019, 55(3): 317-324.
[3] 陶然, 赵玉涛, 陈刚, 怯喜周. 电磁场下原位合成纳米ZrB2 np/AA6111复合材料组织与性能研究[J]. 金属学报, 2019, 55(1): 160-170.
[4] 王晨, 王贝贝, 薛鹏, 王东, 倪丁瑞, 陈礼清, 肖伯律, 马宗义. SiCp/6092Al复合材料搅拌摩擦焊接头的疲劳行为研究[J]. 金属学报, 2019, 55(1): 149-159.
[5] 邱丰, 佟昊天, 沈平, 丛晓霜, 王轶, 姜启川. 综述:SiC/Al界面反应与界面结构演变规律及机制[J]. 金属学报, 2019, 55(1): 87-100.
[6] 赵乃勤, 刘兴海, 蒲博闻. 多维度碳纳米相增强铝基复合材料研究进展[J]. 金属学报, 2019, 55(1): 1-15.
[7] 丁浩, 崔喜平, 许长寿, 李爱滨, 耿林, 范国华, 陈俊锋, 孟松鹤. 连续玄武岩纤维增强铝基层状复合材料的制备与力学特性[J]. 金属学报, 2018, 54(8): 1171-1178.
[8] 武传松, 宿浩, 石磊. 搅拌摩擦焊接产热传热过程与材料流动的数值模拟[J]. 金属学报, 2018, 54(2): 265-277.
[9] 谢广明, 马宗义, 薛鹏, 骆宗安, 王国栋. 工具转速对搅拌摩擦加工Mg-Zn-Y-Zr耐热镁合金超塑性行为的影响[J]. 金属学报, 2018, 54(12): 1745-1755.
[10] 马宗义, 商乔, 倪丁瑞, 肖伯律. 镁合金搅拌摩擦焊接的研究现状与展望[J]. 金属学报, 2018, 54(11): 1597-1617.
[11] 刘晓云,王文广,王东,肖伯律,倪丁瑞,陈礼清,马宗义. 片层石墨尺寸对片层石墨/Al复合材料的强度和热导率的影响[J]. 金属学报, 2017, 53(7): 869-878.
[12] 刘奋军, 傅莉, 张纹源, 孟强, 董春林, 栾国红. 2099-T83/2060-T8异质Al-Li合金搅拌摩擦焊搭接界面结构与力学性能[J]. 金属学报, 2015, 51(3): 281-288.
[13] 杨超,王继杰,马宗义,倪丁瑞,付明杰,李晓华,曾元松. 7B04铝合金薄板的搅拌摩擦焊接及接头低温超塑性研究*[J]. 金属学报, 2015, 51(12): 1449-1456.
[14] 王东, 王全兆, 肖伯律, 倪丁瑞, 马宗义. 焊前热处理状态对SiCp/Al-Cu-Mg复合材料搅拌摩擦焊接头微观组织和力学性能的影响*[J]. 金属学报, 2014, 50(4): 489-497.
[15] 薛鹏, 肖伯律, 马宗义. 搅拌摩擦加工超细晶及纳米结构Cu-Al合金的微观组织和力学性能研究*[J]. 金属学报, 2014, 50(2): 245-251.