Please wait a minute...
金属学报  2017, Vol. 53 Issue (5): 615-621    DOI: 10.11900/0412.1961.2016.00332
  论文 本期目录 | 过刊浏览 |
Sn-Ag-Cu钎料焊接显微组织演化和性能研究
孙磊1,陈明和1(),张亮2,杨帆2
1 南京航空航天大学机电学院 南京 210016
2 江苏师范大学机电工程学院 徐州 221116
Microstructures Evolution and Properties of Sn-Ag-Cu Solder Joints
Lei SUN1,Minghe CHEN1(),Liang ZHANG2,Fan YANG2
1 College of Mechanical & Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
1 College of Mechanical & Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
引用本文:

孙磊,陈明和,张亮,杨帆. Sn-Ag-Cu钎料焊接显微组织演化和性能研究[J]. 金属学报, 2017, 53(5): 615-621.
Lei SUN, Minghe CHEN, Liang ZHANG, Fan YANG. Microstructures Evolution and Properties of Sn-Ag-Cu Solder Joints[J]. Acta Metall Sin, 2017, 53(5): 615-621.

全文: PDF(5124 KB)   HTML
摘要: 

利用DSC、微焊点强度测试仪、SEM、EDS及XRD,研究了Sn0.3Ag0.7Cu、Sn1.0Ag0.5Cu和Sn3.0Ag0.5Cu钎料的熔化特性、润湿性、力学性能、显微组织及相种类。通过TL-1000型高低温循环试验箱测试了-55~125 ℃循环条件下Sn-Ag-Cu焊点的界面层变化。结果表明,随着Ag含量的增加,钎料的熔点变化不大,钎料的润湿角显著降低,N2氛围条件下,3种钎料的润湿性均出现明显的提高。此外,3种焊点的力学性能也随着Ag含量的增加显著提高。Sn0.3Ag0.7Cu、Sn1.0Ag0.5Cu焊点的基体组织存在着少量的Ag3Sn和大颗粒Cu6Sn5化合物,且分布杂乱,Sn3.0Ag0.5Cu焊点的基体组织则相对较为均匀,这也是Sn0.3Ag0.7Cu、Sn1.0Ag0.5Cu焊点的力学性能低于Sn3.0Ag0.5Cu的主要原因。对焊点进行热循环处理,发现3种焊点界面金属间化合物的厚度明显增加,界面层的形貌也由原来扇贝状向层状转化。

关键词 Sn-Ag-Cu润湿性力学性能显微组织热循环    
Abstract

SnAgCu solder alloys, such as Sn3.0Ag0.5Cu, Sn3.8Ag0.7Cu and Sn3.9Ag0.6Cu, are widely used for consumer electronics due to their good wettability, high mechanical properties and excellent thermal fatigue reliability. However, the high Ag content in SnAgCu solder can bring about a relatively high cost and poor drop impact reliability because of the formations of thicker brittle Ag3Sn compound during soldering. Therefore, the development of low Ag content SnAgCu solders to satisfy the requirements of electronic production has become a hot topic in this field. In this work, the effects of Sn0.3Ag0.7Cu, Sn1.0Ag0.5Cu and Sn3.0Ag0.5Cu solder on the melting character, wettability, mechanical properties and microstructures, phase composition were investigated by DSC, micro-joint strength tester, SEM, EDS and XRD. Under -55~125 ℃ cyclic conditions, the interfacial layer change of Sn-Ag-Cu solder joints was measured by TL-1000 high and low temperature test chamber. The results showed that, with the Ag content increased, the melting point was not changed, the wetting angle significantly decreased. And the wettability of three solders was improved under N2 atmosphere. Moreover, the mechanical properties of three solder joints were enhanced with the increase of Ag content. The matrix structure of Sn0.3Ag0.7Cu and Sn1.0Ag0.5Cu solder joint have a small amount of Ag3Sn and large Cu6Sn5 particles, and the distribution of particles were disordered. However, the matrix structure of Sn3.0Ag0.5Cu solder joint was obviously uniform. This is the reason that the mechanical properties of Sn0.3Ag0.7Cu and Sn1.0Ag0.5Cu solder joints were lower than that of Sn3.0Ag0.5Cu. In addition, the solder joints were subjected to a thermal cycling reliability test, it was found that the thickness of intermetallic compounds (IMCs) increased, and the morphology of IMCs was gradually changed from scallop-like to planar-like.

Key wordsSn-Ag-Cu    wettability    mechanical property    microstructure    thermal cycling
收稿日期: 2016-07-25     
基金资助:国家自然科学基金项目No.51475220,江苏省“六大人才高峰”高层次人才项目No.XCL022,江苏省“青蓝工程”中青年学术带头人计划,新型钎焊材料与技术国家重点实验室开放课题项目No.SKLABFMT201503,以及中国博士后科学基金项目No.2016M591464
图1  无铅焊接回流曲线
图2  Sn-Ag-Cu焊点的力学性能测试示意图
图3  热循环实验的温度循环载荷曲线
Solder TS TL Melting
range
Under-
cooling
Sn0.3Ag0.7Cu 213.0 228.1 15.1 22.6
Sn1.0Ag0.5Cu 213.7 227.7 14.0 17.8
Sn3.0Ag0.5Cu 213.4 219.7 6.3 8.3
表1  Sn-Ag-Cu钎料的熔化温度
图4  不同氛围下Sn-Ag-Cu钎料的润湿角
图5  Sn-Ag-Cu钎料焊点的力学性能
图6  Sn-Ag-Cu焊点断口SEM像
图7  Sn3.0Ag0.5Cu焊点的SEM像、EDS面扫描图及XRD谱
图8  Sn-Ag-Cu焊点基体组织的SEM像
图9  Sn-Ag-Cu焊点界面层的SEM像
图10  热循环500 cyc后Sn-Ag-Cu焊点界面层的SEM像
图11  不同热循环时间下Sn-Ag-Cu 焊点的界面层厚度
[1] Chen X, Zhou J, Xue F, et al.Mechanical deformation behavior and mechanism of Sn-58Bi solder alloys under different temperatures and strain rates[J]. Mater. Sci. Eng., 2016, A662: 251
[2] Xu S Y, Habib A H, Pickel A D, et al.Magnetic nanoparticle-based solder composites for electronic packaging applications[J]. Prog. Mater. Sci., 2015, 67: 95
[3] Jiang Z, Tian Y H, Ding S.Synthesis of Sn3.5Ag0.5Cu nanoparticle solders and soldering mechanism[J]. Acta Metall. Sin., 2016, 52: 105
[3] (江智, 田艳红, 丁苏. Sn3.5Ag0.5Cu纳米颗粒钎料制备及钎焊机理[J]. 金属学报, 2016, 52: 105)
[4] Chellvarajoo S, Abdullah M Z.Microstructure and mechanical properties of Pb-free Sn-3.0Ag-0.5Cu solder pastes added with NiO nanoparticles after reflow soldering process[J]. Mater. Des., 2016, 90: 499
[5] Chen X, Xue F, Zhou J, et al.Effect of In on microstructure, thermodynamic characteristic and mechanical properties of Sn-Bi based lead-free solder[J]. J. Alloys Compd., 2015, 633: 377
[6] Chen G, Wu F S, Liu C Q, et al.Microstructures and properties of new Sn-Ag-Cu lead-free solder reinforced with Ni-coated graphene nanosheets[J]. J. Alloys Compd., 2016, 656: 500
[7] Yang M, Ji H J, Wang S, et al.Effects of Ag content on the interfacial reactions between liquid Sn-Ag-Cu solders and Cu substrates during soldering[J]. J. Alloys Compd., 2016, 679: 18
[8] Luo D X, Xue S B, Li Z Q.Effects of Ga addition on microstructure and properties of Sn-0.5Ag-0.7Cu solder[J]. J. Mater. Sci. Mater. Electron., 2014, 25: 3566
[9] Hamada N, Uesugi T, Takigawa Y, et al.Effect of addition of small amount of Zinc on microstructural evolution and thermal shock behavior in low-Ag Sn-Ag-Cu solder joints during Thermal Cycling[J]. Mater. Trans., 2013, 54: 796
[10] Sun L, Zhang L, Xu L, et al.Effect of nano-Al addition on properties and microstructure of low-Ag content Sn-1Ag-0.5Cu solders[J]. J. Mater. Sci. Mater. Electron., 2016, 27: 7665
[11] Chen F J, Gao F, Zhang J Y, et al.Tensile properties and wettability of SAC0307 and SAC105 low Ag lead-free solder alloys[J]. J. Mater. Sci., 2011, 46: 3424
[12] Kanlayasiri K, Mongkolwongrojn M, Ariga T.Influence of indium addition on characteristics of Sn-0.3Ag-0.7Cu solder alloy[J]. J. Alloys Compd., 2009, 485: 225
[13] Wang C Q, Li M Y, Tian Y H, et al.Review of JIS Z 3198: test method for lead-free solders[J]. Electron. Process Technol., 2004, 25(2): 47
[13] (王春青, 李明雨, 田艳红等. JIS Z 3198无铅钎料试验方法简介与评述[J]. 电子工艺技术, 2004, 25(2): 47)
[14] Cheng Y K, Li L F, Xu G L.Effect of Ag on properties of Sn-0.7Cu-0.2Ni alloy solder[J]. J. Funct. Mater., 2013, 44: 384
[14] (程艳奎, 李良锋, 徐光亮. 微量Ag元素对Sn-0.7Cu-0.2Ni钎料性能的影响[J]. 功能材料, 2013, 44: 384)
[15] Zhang L, Fan X Y, Guo Y H, et al.Properties enhancement of SnAgCu solders containing rare earth Yb[J]. Mater. Des., 2014, 57: 646
[16] Wang J X, Xue S B, Huang X, et al.Effects of N2 protection on wettability of Sn-Cu-Ni-Ce lead-free solder[J]. Trans. China Weld. Inst., 2007, 28(1): 49
[16] (王俭辛, 薛松柏, 黄翔等. 氮气保护对Sn-Cu-Ni-Ce无铅钎料润湿性的影响[J]. 焊接学报, 2007, 28(1): 49)
[17] Ma X L.Research on SnAgCu solder alloys [D]. Beijing: Beijing University of Technology, 2004(马秀玲. SnAgCu系无铅钎料的研究 [D]. 北京: 北京工业大学, 2004)
[18] Zhang L, Han J G, Guo Y H, et al.Reliability of SnAgCu/SnAgCuCe solder joints with different heights for electronic packaging[J]. J. Mater. Sci. Mater. Electron., 2014, 25: 4489
[19] Yang L, Ge J G, Zhang Y C, et al.Effect of BaTiO3 on the microstructure and mechanical properties of Sn1.0Ag0.5Cu lead-free solder[J]. J. Mater. Sci. Mater. Electron., 2015, 26: 613
[20] El-Daly A A, Al-Ganainy G S, Fawzy A, et al. Structural characterization and creep resistance of nano-silicon carbide reinforced Sn-1.0Ag-0.5Cu lead-free solder alloy[J]. Mater. Des., 2014, 55: 837
[21] Gu Y, Zhao X C, Li Y, et al.Effect of nano-Fe2O3 additions on wettability and interfacial intermetallic growth of low-Ag content Sn-Ag-Cu solders on Cu substrates[J]. J. Alloys Compd., 2015, 627: 39
[22] Wu R W, Tsao L C, Chen R S.Effect of 0.5 wt% nano-TiO2 addition into low-Ag Sn0.3Ag0.7Cu solder on the intermetallic growth with Cu substrate during isothermal aging[J]. J. Mater. Sci. Mater. Electron., 2015, 26: 1858
[23] Ma L M, Xu G C, Sun J, et al.Electromigration effects on intermetallic compound layer growth in Sn-3.0Ag-0.5Cu-XCo solder joint[J]. Rare Met. Mater. Eng., 2011, 40(Suppl.): 438
[23] (马立民, 徐广臣, 孙嘉等. Sn-3.0Ag-0.5Cu-XCo钎焊接头金属间化合物层电迁移现象的研究[J]. 稀有金属材料与工程, 2011, 40(增刊): 438)
[24] Sun L, Zhang L, Zhong S J, et al.Reliability study of industry Sn3.0Ag0.5Cu/Cu lead-free soldered joints in electronic packaging[J]. J. Mater. Sci. Mater. Electron., 2015, 26: 9164
[25] Zhang L, Gao L L.Interfacial compounds growth of SnAgCu (nano La2O3)/Cu solder joints based on experiments and FEM[J]. J. Alloys Compd., 2015, 635: 55
[1] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[6] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[9] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[10] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[11] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[12] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[13] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[14] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[15] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.