Please wait a minute...
金属学报  2017, Vol. 53 Issue (5): 615-621    DOI: 10.11900/0412.1961.2016.00332
  论文 本期目录 | 过刊浏览 |
1 南京航空航天大学机电学院 南京 210016
2 江苏师范大学机电工程学院 徐州 221116
Microstructures Evolution and Properties of Sn-Ag-Cu Solder Joints
Lei SUN1,Minghe CHEN1(),Liang ZHANG2,Fan YANG2
1 College of Mechanical & Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
1 College of Mechanical & Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
全文: PDF(5124 KB)   HTML

利用DSC、微焊点强度测试仪、SEM、EDS及XRD,研究了Sn0.3Ag0.7Cu、Sn1.0Ag0.5Cu和Sn3.0Ag0.5Cu钎料的熔化特性、润湿性、力学性能、显微组织及相种类。通过TL-1000型高低温循环试验箱测试了-55~125 ℃循环条件下Sn-Ag-Cu焊点的界面层变化。结果表明,随着Ag含量的增加,钎料的熔点变化不大,钎料的润湿角显著降低,N2氛围条件下,3种钎料的润湿性均出现明显的提高。此外,3种焊点的力学性能也随着Ag含量的增加显著提高。Sn0.3Ag0.7Cu、Sn1.0Ag0.5Cu焊点的基体组织存在着少量的Ag3Sn和大颗粒Cu6Sn5化合物,且分布杂乱,Sn3.0Ag0.5Cu焊点的基体组织则相对较为均匀,这也是Sn0.3Ag0.7Cu、Sn1.0Ag0.5Cu焊点的力学性能低于Sn3.0Ag0.5Cu的主要原因。对焊点进行热循环处理,发现3种焊点界面金属间化合物的厚度明显增加,界面层的形貌也由原来扇贝状向层状转化。

关键词 Sn-Ag-Cu润湿性力学性能显微组织热循环    

SnAgCu solder alloys, such as Sn3.0Ag0.5Cu, Sn3.8Ag0.7Cu and Sn3.9Ag0.6Cu, are widely used for consumer electronics due to their good wettability, high mechanical properties and excellent thermal fatigue reliability. However, the high Ag content in SnAgCu solder can bring about a relatively high cost and poor drop impact reliability because of the formations of thicker brittle Ag3Sn compound during soldering. Therefore, the development of low Ag content SnAgCu solders to satisfy the requirements of electronic production has become a hot topic in this field. In this work, the effects of Sn0.3Ag0.7Cu, Sn1.0Ag0.5Cu and Sn3.0Ag0.5Cu solder on the melting character, wettability, mechanical properties and microstructures, phase composition were investigated by DSC, micro-joint strength tester, SEM, EDS and XRD. Under -55~125 ℃ cyclic conditions, the interfacial layer change of Sn-Ag-Cu solder joints was measured by TL-1000 high and low temperature test chamber. The results showed that, with the Ag content increased, the melting point was not changed, the wetting angle significantly decreased. And the wettability of three solders was improved under N2 atmosphere. Moreover, the mechanical properties of three solder joints were enhanced with the increase of Ag content. The matrix structure of Sn0.3Ag0.7Cu and Sn1.0Ag0.5Cu solder joint have a small amount of Ag3Sn and large Cu6Sn5 particles, and the distribution of particles were disordered. However, the matrix structure of Sn3.0Ag0.5Cu solder joint was obviously uniform. This is the reason that the mechanical properties of Sn0.3Ag0.7Cu and Sn1.0Ag0.5Cu solder joints were lower than that of Sn3.0Ag0.5Cu. In addition, the solder joints were subjected to a thermal cycling reliability test, it was found that the thickness of intermetallic compounds (IMCs) increased, and the morphology of IMCs was gradually changed from scallop-like to planar-like.

Key wordsSn-Ag-Cu    wettability    mechanical property    microstructure    thermal cycling
收稿日期: 2016-07-25      出版日期: 2017-02-23


孙磊,陈明和,张亮,杨帆. Sn-Ag-Cu钎料焊接显微组织演化和性能研究[J]. 金属学报, 2017, 53(5): 615-621.
Lei SUN,Minghe CHEN,Liang ZHANG,Fan YANG. Microstructures Evolution and Properties of Sn-Ag-Cu Solder Joints. Acta Metall, 2017, 53(5): 615-621.

链接本文:      或

图1  无铅焊接回流曲线
图2  Sn-Ag-Cu焊点的力学性能测试示意图
图3  热循环实验的温度循环载荷曲线
Solder TS TL Melting
Sn0.3Ag0.7Cu 213.0 228.1 15.1 22.6
Sn1.0Ag0.5Cu 213.7 227.7 14.0 17.8
Sn3.0Ag0.5Cu 213.4 219.7 6.3 8.3
表1  Sn-Ag-Cu钎料的熔化温度
图4  不同氛围下Sn-Ag-Cu钎料的润湿角
图5  Sn-Ag-Cu钎料焊点的力学性能
图6  Sn-Ag-Cu焊点断口SEM像
图7  Sn3.0Ag0.5Cu焊点的SEM像、EDS面扫描图及XRD谱
图8  Sn-Ag-Cu焊点基体组织的SEM像
图9  Sn-Ag-Cu焊点界面层的SEM像
图10  热循环500 cyc后Sn-Ag-Cu焊点界面层的SEM像
图11  不同热循环时间下Sn-Ag-Cu 焊点的界面层厚度
[1] Chen X, Zhou J, Xue F, et al.Mechanical deformation behavior and mechanism of Sn-58Bi solder alloys under different temperatures and strain rates[J]. Mater. Sci. Eng., 2016, A662: 251
[2] Xu S Y, Habib A H, Pickel A D, et al.Magnetic nanoparticle-based solder composites for electronic packaging applications[J]. Prog. Mater. Sci., 2015, 67: 95
[3] Jiang Z, Tian Y H, Ding S.Synthesis of Sn3.5Ag0.5Cu nanoparticle solders and soldering mechanism[J]. Acta Metall. Sin., 2016, 52: 105
[3] (江智, 田艳红, 丁苏. Sn3.5Ag0.5Cu纳米颗粒钎料制备及钎焊机理[J]. 金属学报, 2016, 52: 105)
[4] Chellvarajoo S, Abdullah M Z.Microstructure and mechanical properties of Pb-free Sn-3.0Ag-0.5Cu solder pastes added with NiO nanoparticles after reflow soldering process[J]. Mater. Des., 2016, 90: 499
[5] Chen X, Xue F, Zhou J, et al.Effect of In on microstructure, thermodynamic characteristic and mechanical properties of Sn-Bi based lead-free solder[J]. J. Alloys Compd., 2015, 633: 377
[6] Chen G, Wu F S, Liu C Q, et al.Microstructures and properties of new Sn-Ag-Cu lead-free solder reinforced with Ni-coated graphene nanosheets[J]. J. Alloys Compd., 2016, 656: 500
[7] Yang M, Ji H J, Wang S, et al.Effects of Ag content on the interfacial reactions between liquid Sn-Ag-Cu solders and Cu substrates during soldering[J]. J. Alloys Compd., 2016, 679: 18
[8] Luo D X, Xue S B, Li Z Q.Effects of Ga addition on microstructure and properties of Sn-0.5Ag-0.7Cu solder[J]. J. Mater. Sci. Mater. Electron., 2014, 25: 3566
[9] Hamada N, Uesugi T, Takigawa Y, et al.Effect of addition of small amount of Zinc on microstructural evolution and thermal shock behavior in low-Ag Sn-Ag-Cu solder joints during Thermal Cycling[J]. Mater. Trans., 2013, 54: 796
[10] Sun L, Zhang L, Xu L, et al.Effect of nano-Al addition on properties and microstructure of low-Ag content Sn-1Ag-0.5Cu solders[J]. J. Mater. Sci. Mater. Electron., 2016, 27: 7665
[11] Chen F J, Gao F, Zhang J Y, et al.Tensile properties and wettability of SAC0307 and SAC105 low Ag lead-free solder alloys[J]. J. Mater. Sci., 2011, 46: 3424
[12] Kanlayasiri K, Mongkolwongrojn M, Ariga T.Influence of indium addition on characteristics of Sn-0.3Ag-0.7Cu solder alloy[J]. J. Alloys Compd., 2009, 485: 225
[13] Wang C Q, Li M Y, Tian Y H, et al.Review of JIS Z 3198: test method for lead-free solders[J]. Electron. Process Technol., 2004, 25(2): 47
[13] (王春青, 李明雨, 田艳红等. JIS Z 3198无铅钎料试验方法简介与评述[J]. 电子工艺技术, 2004, 25(2): 47)
[14] Cheng Y K, Li L F, Xu G L.Effect of Ag on properties of Sn-0.7Cu-0.2Ni alloy solder[J]. J. Funct. Mater., 2013, 44: 384
[14] (程艳奎, 李良锋, 徐光亮. 微量Ag元素对Sn-0.7Cu-0.2Ni钎料性能的影响[J]. 功能材料, 2013, 44: 384)
[15] Zhang L, Fan X Y, Guo Y H, et al.Properties enhancement of SnAgCu solders containing rare earth Yb[J]. Mater. Des., 2014, 57: 646
[16] Wang J X, Xue S B, Huang X, et al.Effects of N2 protection on wettability of Sn-Cu-Ni-Ce lead-free solder[J]. Trans. China Weld. Inst., 2007, 28(1): 49
[16] (王俭辛, 薛松柏, 黄翔等. 氮气保护对Sn-Cu-Ni-Ce无铅钎料润湿性的影响[J]. 焊接学报, 2007, 28(1): 49)
[17] Ma X L.Research on SnAgCu solder alloys [D]. Beijing: Beijing University of Technology, 2004(马秀玲. SnAgCu系无铅钎料的研究 [D]. 北京: 北京工业大学, 2004)
[18] Zhang L, Han J G, Guo Y H, et al.Reliability of SnAgCu/SnAgCuCe solder joints with different heights for electronic packaging[J]. J. Mater. Sci. Mater. Electron., 2014, 25: 4489
[19] Yang L, Ge J G, Zhang Y C, et al.Effect of BaTiO3 on the microstructure and mechanical properties of Sn1.0Ag0.5Cu lead-free solder[J]. J. Mater. Sci. Mater. Electron., 2015, 26: 613
[20] El-Daly A A, Al-Ganainy G S, Fawzy A, et al. Structural characterization and creep resistance of nano-silicon carbide reinforced Sn-1.0Ag-0.5Cu lead-free solder alloy[J]. Mater. Des., 2014, 55: 837
[21] Gu Y, Zhao X C, Li Y, et al.Effect of nano-Fe2O3 additions on wettability and interfacial intermetallic growth of low-Ag content Sn-Ag-Cu solders on Cu substrates[J]. J. Alloys Compd., 2015, 627: 39
[22] Wu R W, Tsao L C, Chen R S.Effect of 0.5 wt% nano-TiO2 addition into low-Ag Sn0.3Ag0.7Cu solder on the intermetallic growth with Cu substrate during isothermal aging[J]. J. Mater. Sci. Mater. Electron., 2015, 26: 1858
[23] Ma L M, Xu G C, Sun J, et al.Electromigration effects on intermetallic compound layer growth in Sn-3.0Ag-0.5Cu-XCo solder joint[J]. Rare Met. Mater. Eng., 2011, 40(Suppl.): 438
[23] (马立民, 徐广臣, 孙嘉等. Sn-3.0Ag-0.5Cu-XCo钎焊接头金属间化合物层电迁移现象的研究[J]. 稀有金属材料与工程, 2011, 40(增刊): 438)
[24] Sun L, Zhang L, Zhong S J, et al.Reliability study of industry Sn3.0Ag0.5Cu/Cu lead-free soldered joints in electronic packaging[J]. J. Mater. Sci. Mater. Electron., 2015, 26: 9164
[25] Zhang L, Gao L L.Interfacial compounds growth of SnAgCu (nano La2O3)/Cu solder joints based on experiments and FEM[J]. J. Alloys Compd., 2015, 635: 55
[1] 李天瑞, 刘国怀, 徐莽, 牛红志, 付天亮, 王昭东, 王国栋. Ti-43Al-4Nb-1.5Mo合金包套锻造与热处理过程的微观组织及高温拉伸性能[J]. 金属学报, 2017, 53(9): 1055-1064.
[2] 侯陇刚, 刘明荔, 王新东, 庄林忠, 张济山. 高强7050铝合金超低温大变形加工与组织、性能调控[J]. 金属学报, 2017, 53(9): 1075-1090.
[3] 刘国怀, 李天瑞, 徐莽, 付天亮, 李勇, 王昭东, 王国栋. 累积叠轧TC4钛合金的组织演化与力学性能[J]. 金属学报, 2017, 53(9): 1038-1046.
[4] 席明哲, 吕超, 吴贞号, 尚俊英, 周玮, 董荣梅, 高士友. 连续点式锻压激光快速成形TC11钛合金的组织和力学性能[J]. 金属学报, 2017, 53(9): 1065-1074.
[5] 张文奇, 朱海红, 胡志恒, 曾晓雁. AlSi10Mg的激光选区熔化成形研究[J]. 金属学报, 2017, 53(8): 918-926.
[6] 李细锋, 陈楠楠, 李佼佼, 何雪婷, 刘红兵, 郑兴伟, 陈军. 温度与应变速率对Invar 36合金变形行为的影响[J]. 金属学报, 2017, 53(8): 968-974.
[7] 郭廷彪, 李琦, 王晨, 张锋, 贾智. 单晶Cu等通道转角挤压A路径形变特征及力学性能[J]. 金属学报, 2017, 53(8): 991-1000.
[8] 陈波, 郝宪朝, 马颖澈, 查向东, 刘奎. 添加N对Inconel 690合金显微组织和晶界微区成分的影响[J]. 金属学报, 2017, 53(8): 983-990.
[9] 刘晓云,王文广,王东,肖伯律,倪丁瑞,陈礼清,马宗义. 片层石墨尺寸对片层石墨/Al复合材料的强度和热导率的影响[J]. 金属学报, 2017, 53(7): 869-878.
[10] 杨建海,张玉祥,葛利玲,程晓,陈家照,高杨. 焊前混合表面纳米化对2A14铝合金搅拌摩擦焊接头微观组织和力学性能的影响[J]. 金属学报, 2017, 53(7): 842-850.
[11] 张苏强,赵洪运,舒凤远,王国栋,贺文雄. 焊接热循环对Q315NS钢在H2SO4溶液中腐蚀行为的影响[J]. 金属学报, 2017, 53(7): 808-816.
[12] 舒志强,袁鹏斌,欧阳志英,龚丹梅,白雪明. 回火温度对26CrMo钻杆钢显微组织和力学性能的影响[J]. 金属学报, 2017, 53(6): 669-676.
[13] 张洪伟,秦学智,李小武,周兰章. 一种高硼定向凝固合金的初熔行为及其对力学性能的影响[J]. 金属学报, 2017, 53(6): 684-694.
[14] 谷倩倩, 阮莹, 朱海哲, 闫娜. 冷却速率对急冷Fe-Al-Nb三元合金凝固组织形成的影响[J]. 金属学报, 2017, 53(6): 641-647.
[15] 江鹏,袁同心,于彦东. 加工条件对多相V-Ti-Ni合金的显微组织和氢渗透性能的影响[J]. 金属学报, 2017, 53(4): 433-439.