Please wait a minute...
金属学报  2016, Vol. 52 Issue (10): 1279-1296    DOI: 10.11900/0412.1961.2016.00323
  本期目录 | 过刊浏览 |
镁合金凝固过程三维枝晶形貌和生长取向研究进展:三维实验表征和相场模拟*
荆涛1(),帅三三1,汪明月2,郑启威1
1 清华大学材料学院先进成形教育部重点实验室, 北京 100084
2 北京航空航天大学国际交叉研究中心, 北京 100191
RESEARCH PROGRESS ON 3D DENDRITE MORPHO-LOGY AND ORIENTATION SELECTION DURING THE SOLIDIFICATION OF Mg ALLOYS: 3D EXPERIMENTAL CHARACTERIZATION AND PHASE FIELD MODELING
Tao JING1(),Sansan SHUAI1,Mingyue WANG2,Qiwei ZHENG1
1 School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
2 International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191, China
全文: PDF(14657 KB)   HTML
  
摘要: 

Mg作为一种典型的hcp结构金属, 其枝晶形貌和生长取向受到多种因素的影响, 目前针对镁合金中α-Mg 枝晶生长模型的描述以及多样性的起源等问题的研究都比较缺乏, 基于此, 本文综述了本课题组在镁合金凝固微观组织结构三维表征方面取得的研究成果. 借助同步辐射X射线微观断层扫描技术以及相场数值模型, 研究了镁合金凝固过程中α-Mg (X)枝晶生长选择多样性的形成机理以及固溶合金元素(Al, Ca, Zn 和Sn 等)、固溶元素含量(溶质浓度)等因素对α-Mg 枝晶生长选择和演化的影响. 研究结果表明, 固溶元素、固溶元素含量等因素都会对镁合金中α-Mg三维枝晶形貌和择优取向产生重要影响. 在Mg-Ca和Mg-Al (hcp-fcc)合金中, 枝晶倾向于以<112?0>或<224?5>为择优方向生长. 在Mg-Sn (hcp-bct)合金中, 等轴生长的枝晶沿着基面上<112?0>和偏离基面的<112?X> (X2)方向形成一种18次分支的结构, 在Mg-Zn (hcp-hcp)合金中, α-Mg枝晶的择优取向会随着Zn含量的增加, 从<112?0>方向朝偏离基面的<112?1>方向发生连续转变, 并在转变的过渡区, 发现了超支化的藻状枝晶结构, 其原因可能是高各向异性Zn元素的引入带来的固/液界面自由能各向异性的变化. 研究结果从一定程度上揭示了镁合金凝固过程中α-Mg枝晶生长形貌和分支结构选择多样性的规律. 同时基于快速X射线成像技术率先开展了镁合金凝固过程三维微观结构演化原位表征研究, 获得了镁合金凝固过程三维枝晶的生长演化过程.

关键词 镁合金凝固三维枝晶形貌相场模拟X射线微观断层扫描    
Abstract

As a typical hexagonal close-packed structure metal, the dendritic morphology and preferential orientation of Mg would be influenced by many factors. Current investigations still fall short on the thorough description of the diversity and complexity of dendrites growth patterns and their origination, therefore, this paper re viewed recent research progress of this group on 3D characterization of microstructure in solidified magnesium alloys. Using synchrotron X-ray tomography and phase-field modeling, the formation mechanism of the diverse α-Mg (X) dendrites and the affections of alloying element (such as Al, Ca, Zn, and Sn), solute concentration on the growth selection and evolution of α-Mg dendrites during solidification were studied. The results indicate that the alloying elements and solute concentration would impose a significant influence on the morphology and orientation selection of the primary α-Mg dendrites. In Mg-Ca and Mg-Al (hcp-fcc) alloys, dendrites tend to grow with preferred orientation of <112?0> or <224?5> which is in good agreement with the traditional expected direction. The equiaxed growth dendrites in Mg-Sn (hcp-bct) alloys evolve as a structure with 18 branches, six of which grow on the basal plane along <112?0> and the remaining 12 along <112?X> (X≈2) off the basal plane. For the case in Mg-Zn alloys, an orientation transition from <112?0> on the basal plane to <112?1> off the basal plane are observed with the increasing addition of Zn alloying element, a hyperbranched seaweed structure is also revealed with an interim composition. A probable explanation is that the addition of high anisotropy Zn would slightly alter the anisotropy of interfacial free energy in front of the growth interface which results in a dendrite orientation transition (DOT). These findings partially reveal the underlying formation mechanism and origination of the diversity dendritic morphologies and branching structures of α-Mg dendrites in Mg alloys. Furthermore, with the fast X-ray imaging facility, in situ observations of the 3D microstructure evolution in Mg alloys during solidification are also carried out and the evolution of α-Mg dendrites are obtained for further analysis.

Key wordsMg alloy    solidification    3D dendritic morphology    phase-field simulation    X-ray tomography
收稿日期: 2016-07-22      出版日期: 2016-09-12
ZTFLH:     
基金资助:* 国家自然科学基金项目51175292和先进成形制造全流程建模与仿真创新平台项目2012ZX04012-011资助

引用本文:

荆涛, 帅三三, 汪明月, 郑启威. 镁合金凝固过程三维枝晶形貌和生长取向研究进展:三维实验表征和相场模拟*[J]. 金属学报, 2016, 52(10): 1279-1296.
Tao JING, Sansan SHUAI, Mingyue WANG, Qiwei ZHENG. RESEARCH PROGRESS ON 3D DENDRITE MORPHO-LOGY AND ORIENTATION SELECTION DURING THE SOLIDIFICATION OF Mg ALLOYS: 3D EXPERIMENTAL CHARACTERIZATION AND PHASE FIELD MODELING. Acta Metall, 2016, 52(10): 1279-1296.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2016.00323      或      http://www.ams.org.cn/CN/Y2016/V52/I10/1279

Crystal structure Preferred orientation Example
fcc <100> Al, Cu, Ni, γ-Fe
bcc <100> δ-Fe, succinonitrile, NH4Cl
bct <110> Sn
hcp <101?0> H2O, Zn
<112?0> Mg
表1  不同金属材料枝晶生长晶体学择优取向[34]
图1  Mg-9Al-0.7Zn合金普通铸态和淬火组织的OM像
图2  X射线微观断层扫描成像原理[39]
图3  上海光源和BL13W1 X射线成像线站设备图
图4  实验图片处理过程及操作功能选择
图5  通过2Dlivewire算法利用X射线断层扫描术重构的三维α-Mg树枝晶形貌[23,29]
图6  Mg-Ca 合金中α-Mg 枝晶形核基底选择和三维枝晶形貌
图7  等轴生长α-Mg(Ca)合金枝晶微观结构
图8  不同Zn含量的Mg-Zn合金中α-Mg三维枝晶形貌和枝晶分支结构
图9  Mg-50%Zn合金中α-Mg枝晶生长方向
图10  Mg-Zn合金枝晶臂偏离基面的取向差以及Al-Zn合金中枝晶臂偏离<100>方向的取向差[35]
图11  Mg-Sn合金等轴生长α-Mg枝晶形貌、分支结构和生长模型
图12  实验观察到的等轴生长的镁合金枝晶生长模型
图13  基于枝晶生长模型提出的相场模拟各向异性函数模型
图14  相场模拟Mg-25%Zn枝晶生长结果
图15  金相实验结果与相场模拟计算结果的对比
图16  Mg-15%Sn合金中α-Mg枝晶的真实三维组织和相场模拟结果对比
图17  冷却速率为3 ℃/min时Mg-15%Sn合金凝固过程不同时刻和温度的二维枝晶形貌
图18  冷却速率为12 ℃/min时 Mg-15%Sn合金凝固过程不同时刻和温度的二维枝晶形貌
图19  冷却速率为3 ℃/min时Mg-15%Sn合金凝固过程中单个枝晶三维形貌演化
图20  冷却速率为12 ℃/min时Mg-15%Sn合金凝固过程中单个枝晶三维形貌演化
[1] Chen Z H, Yan H G, Chen J H. Magnesium Alloys.Beijing: Chemical Industry Press, 2004: 2
[1] (陈振华, 严红革, 陈吉华. 镁合金. 北京:化学工业出版社, 2004: 2)
[2] Mordike B L, Ebert T.Mater Sci Eng, 2001; A302: 37
[3] Pollock T M.Science, 2010; 328: 986
[4] Flemings M C.Metall Trans, 1974; 5: 2121
[5] Flemings M C.Mater Trans, 2005; 46: 895
[6] Glicksman M E.Principles of Solidification: an Introduction to Modern Casting and Crystal Growth Concepts. New York: Springer Science & Business Media, 2010: 101
[7] Mendoza R.PhD Dissertation, Northwestern University, Evanston, 2004
[8] Mendoza R, Savin I, Thornton K, Voorhees P W.Nat Mater, 2004; 3: 385
[9] Kammer D, Voorhees P W.Acta Mater, 2006; 54: 1549
[10] Xu W, Ferry M, Mateescu N, Cairney J M, Humphreys F J.Mater Charact, 2007; 58: 961
[11] Rowenhorst D J, Gupta A, Feng C R, Spanos G.Scr Mater, 2006; 55: 11
[12] Rowenhorst D J, Lewis A C, Spanos G.Acta Mater, 2010; 58: 5511
[13] Spanos G, Geltmacher A B, Lewis A C, Bingert J F, Mehl M, Papaconstantopoulos D, Mishin Y, Gupta A, Matic P.Mater Sci Eng, 2007; A452: 558
[14] Spanos G, Rowenhorst D J, Lewis A C, Geltmacher A B.MRS Bulletin, 2008; 33: 597
[15] Macsleyne J, Uchic M D, Simmons J P, Graef M D.Acta Mater, 2009; 57: 6251
[16] Wilson J R, Kobsiriphat W, Mendoza R, Chen H Y, Hiller J M, Miller D J, Thornton K, Voorhees P W, Adler S B, Barnett S A.Nat Mater, 2006; 5: 541
[17] Felberbaum M, Rappaz M.Acta Mater, 2011; 59: 6849
[18] Maire E, Withers P J.Int Mater Rev, 2014; 59: 1
[19] Manuwong T, Zhang W, Kazinczi P L, Bodey A J, Rau C, Mi J.Metall Mater Trans, 2015; 46A: 2908
[20] Puncreobutr C, Lee P D, Hamilton R W, Cai B, Connolley T.Metall Mater Trans, 2013; 44A: 5389
[21] Terzi S, Salvo L, Suery M, Dahle A K, Boller E.Acta Mater, 2010; 58: 20
[22] Tolnai D, Townsend P, Requena G, Salvo L, Lendvai J, Degischer H P.Acta Mater, 2012; 60: 2568
[23] Wang M Y, Williams J J, Jiang L, De Carlo F, Jing T, Chawla N.Scr Mater, 2011; 65: 855
[24] Wang M Y, Xu Y J, Jing T, Peng G Y, Fu Y N, Chawla N.Scr Mater, 2012; 67: 629
[25] Maire E, Babout L, Buffiere J, Fougeres R.Mater Sci Eng, 2001; A321: 216
[26] Pettersen K, Lohne O, Ryum N.Metall Mater Trans, 1990; 21A: 221
[27] Pettersen K, Ryum N.Metall Mater Trans, 1989; 20A: 847
[28] Shuai S S, Guo E Y, Zheng Q W, Wang M Y, Jing T.Mater Charact, 2016; 111: 170
[29] Wang M Y, Jing T, Liu B C.Scr Mater, 2009; 61: 777
[30] Wang M Y, Xu Y J, Zheng Q W, Wu S J, Jing T, Chawla N.Metall Mater Trans, 2014; 45A: 2562
[31] Wang M Y, Williams J J, Jiang L, De Carlo F, Jing T, Chawla N.Metall Micro Ana, 2012; 1: 7
[32] Shuai S S, Guo E Y, Zheng Q W, Wang M Y, Jing T, Fu Y.Mater Charact, 2016; 118: 304
[33] Shuai S S, Guo E Y, Wang M Y, Callaghan M D, Jing T, Zheng Q W, Lee P D.Metall Mater Trans, 2016; 47A: 4368
[34] Gonzales F, Rappaz M.Metall Mater Trans, 2006; 37A: 2797
[35] Haxhimali T, Karma A, Gonzales F, Rappaz M.Nat Mater, 2006; 5: 660
[36] Dantzig J A, Rappaz M.Solidification. Lausanne: EPFL Press, 2009: 289
[37] Mathiesen R H, Arnberg L, Bleuet P, Somogyi A.Metall Mater Trans, 2006; 37A: 2515
[38] Ludwig O, Dimichiel M, Salvo L, Suery M, Falus P.Metall Mater Trans, 2005; 36A: 1515
[39] Limodin N, Salvo L, Boller E, Suéry M, Felberbaum M, Gailliègue S, Madi K.Acta Mater, 2009; 57: 2300
[40] Kak A C.Digital Image Processing Techniques. Orlando: Acdemic Press Inc; 1984: 111
[41] SSRF
[42] ImageJ.
[43] Avizo
[44] Karma A, Rappel W J.Phys Rev Lett, 1996; 77: 4050
[45] Karma A, Rappel W J.Phys Rev, 1998; 57E: 4323
[46] Boettinger W J, Warren J A, Beckermann C, Karma A.Anu Rev Mater Res, 2002; 32: 163
[47] Ramirez J C, Beckermann C, Karma A, Diepers H J.Phys Rev, 2004; 69E: 051607
[48] Sun D Y, Mendelev M I, Becker C A, Kudin K, Haxhimali T, Asta M, Hoyt J J, Karma A, Srolovitz D J.Phys Rev, 2006; 73B: 1
[49] Xu W, Horsfield A P, Wearing D, Lee P D.J Alloys Compd, 2015; 650: 228
[50] Blanco-Rodriguez P, Rodriguez-Aseguinolaza J, Risueno E, Tello M.Energy, 2014; 72: 414
[51] Friedli J, Fife J L, Di Napoli P, Rappaz M.Metall Mater Trans, 2013; 44A: 5522
[52] Friedli J, Fife J L, Di Napoli P, Rappaz M.IOP Conf Series: Mater Sci Eng, 2012; 33: 012034
[1] 李芸, 刘连杰, 李新明, 李金富. 过冷Co75B25合金的凝固[J]. 金属学报, 2018, 54(8): 1165-1170.
[2] 刘金辉, 宋影伟, 单大勇, 韩恩厚. 铸态和锻造态Mg-5Y-7Gd-1Nd-0.5Zr合金腐蚀行为对比研究[J]. 金属学报, 2018, 54(8): 1141-1149.
[3] 刘晏宇, 毛萍莉, 刘正, 王峰, 王志. Schmid因子的理论计算及其在镁合金高速变形过程中的应用[J]. 金属学报, 2018, 54(6): 950-958.
[4] 樊丹丹, 许军锋, 钟亚男, 坚增运. 过热温度和冷却速率对过冷Ti熔体凝固过程的影响[J]. 金属学报, 2018, 54(6): 844-850.
[5] 翟斌, 周凯, 吕鹏, 王海鹏. 自由落体条件下Ti-6Al-4V合金微液滴的快速凝固研究[J]. 金属学报, 2018, 54(5): 824-830.
[6] 侯渊, 任忠鸣, 王江, 张振强, 李霞. 纵向静磁场对定向凝固GCr15轴承钢柱状晶向等轴晶转变的影响[J]. 金属学报, 2018, 54(5): 801-808.
[7] 吴国华, 陈玉狮, 丁文江. 高性能镁合金凝固组织控制研究现状与展望[J]. 金属学报, 2018, 54(5): 637-646.
[8] 陈光, 郑功, 祁志祥, 张锦鹏, 李沛, 成家林, 张中武. 受控凝固及其应用研究进展[J]. 金属学报, 2018, 54(5): 669-681.
[9] 王锦程, 郭春文, 李俊杰, 王志军. 定向凝固晶粒竞争生长的研究进展[J]. 金属学报, 2018, 54(5): 657-668.
[10] 朱鸣芳, 邢丽科, 方辉, 张庆宇, 汤倩玉, 潘诗琰. 合金凝固枝晶粗化的研究进展[J]. 金属学报, 2018, 54(5): 789-800.
[11] 李金富, 周尧和. 液态金属深过冷快速凝固过程中初生固相的重熔[J]. 金属学报, 2018, 54(5): 627-636.
[12] 李言祥, 刘效邦. 定向凝固多孔金属研究进展[J]. 金属学报, 2018, 54(5): 727-741.
[13] 刘峰, 张旭, 张玉兵. 非平衡凝固与固态相变的一体化研究[J]. 金属学报, 2018, 54(5): 701-716.
[14] 康慧君, 李金玲, 王同敏, 郭景杰. 定向凝固Al-Mn-Be合金初生金属间化合物相生长行为及力学性能[J]. 金属学报, 2018, 54(5): 809-823.
[15] 赵九洲, 江鸿翔. 偏晶合金凝固过程研究进展[J]. 金属学报, 2018, 54(5): 682-700.