Please wait a minute...
金属学报  2017, Vol. 53 Issue (5): 531-538    DOI: 10.11900/0412.1961.2016.00321
  论文 本期目录 | 过刊浏览 |
热加工对Z3CN20-09M双相不锈钢组织及热老化冲击断裂行为的影响
张海,李时磊,刘刚,王艳丽()
北京科技大学新金属材料国家重点实验室 北京 100083
Effects of Hot Working on the Microstructure and Thermal Ageing Impact Fracture Behaviors of Z3CN20-09MDuplex Stainless Steel
Hai ZHANG,Shilei LI,Gang LIU,Yanli WANG()
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

张海,李时磊,刘刚,王艳丽. 热加工对Z3CN20-09M双相不锈钢组织及热老化冲击断裂行为的影响[J]. 金属学报, 2017, 53(5): 531-538.
Hai ZHANG, Shilei LI, Gang LIU, Yanli WANG. Effects of Hot Working on the Microstructure and Thermal Ageing Impact Fracture Behaviors of Z3CN20-09MDuplex Stainless Steel[J]. Acta Metall Sin, 2017, 53(5): 531-538.

全文: PDF(7260 KB)   HTML
摘要: 

铸态Z3CN20-09M双相不锈钢经1200 ℃热锻后,采用400 ℃热老化100、1000、3000 h处理。利用SEM和EBSD分析了铸态及锻态Z3CN20-09M双相不锈钢的显微组织和热老化1000、3000 h的冲击断口,采用纳米力学探针和冲击试验机测试了铸态及锻态Z3CN20-09M双相不锈钢热老化0、100、1000、3000 h微区力学性能和冲击性能。研究表明,经热加工后铁素体晶粒的取向呈现无序态,奥氏体晶粒由粗大的柱状晶经再结晶后变成细小的等轴晶。随热老化时间延长,铸态和锻态材料的冲击功都呈现下降趋势。热老化1000 h,铸态和锻态材料均呈现微孔聚集型断裂,断口出现大量韧窝花样。热老化3000 h,铸态和锻态材料均呈现韧窝/解理混合型断裂特征,铁素体发生脆性解理断裂, 奥氏体以撕裂或呈微孔聚集型断裂。铁素体区域内取向不同导致锻态材料冲击断口解理特征明显少于铸态材料。

关键词 双相不锈钢热加工热老化断裂晶粒取向    
Abstract

Duplex stainless steels are widely used in nuclear industry for their excellent mechanical behavior, good weldability and superior ressistance to corrosion, the fracture toughness of which will be deteriorated with ageing time, as they are exposed to a certain temperature (204~538 ℃). In the present work, hot forging will be employed to induce the change of ferrite grain orientation and refinement of austenite grains; it is expected to improve the impact toughness after long-term thermal ageing. The microstructure and impact surface morphology of Z3CN20-09M duplex stainless steel were investigated by using SEM and EBSD. The micro-mechanical properties and impact properties of Z3CN20-09M duplex stainless steel at different thermal ageing time were tested by a nano-indenter and an instrumented impact tester. The results show that the crystal orientation of ferrite changes obviously and the austenite is changed from the original coarse columnar grains to the fine equiaxed grains after hot working. The im pact toughness of cast materials and forged materials decreases greatly with ageing time. The charpy impact energy of both aged and unaged forged-materials is higher than that of cast material. Cast material and forged material exhibit microvoid coalescence fracture in the early of thermal ageing; after 3000 h thermal ageing, the impact fracture features changes from ductile dimples to brittle cleavages in ferrites and tearings or dimples in austenites. However, cleavage features in forged material are significantly less than those in cast material due to the difference in ferrite crystal orientation.

Key wordsduplex stainless steel    hot working    thermal ageing    fracture    grain orientation
收稿日期: 2016-07-20     
基金资助:国家自然科学基金项目No.51601013和新金属材料国家重点实验室开放基金项目No.2015-ZD09
图1  Z3CN20-09M双相不锈钢铸态和热锻+固溶态的SEM-BSE像
图2  Z3CN20-09M双相不锈钢铸态及热锻态的EBSD像
图3  Z3CN20-09M双相不锈钢经热锻+固溶处理后的EBSD像
图4  Z3CN20-09M双相不锈钢铁素体和奥氏体纳米硬度随热老化时间的变化
图5  Z3CN20-09M双相不锈钢铁素体压入载荷-位移曲线
图6  铸态和锻态Z3CN20-09M双相不锈钢Charpy冲击功随热老化时间的变化趋势
图7  热老化1000和3000 h铸态和锻态Z3CN20-09M双相不锈钢的冲击断口表面形貌
图8  铸态Z3CN20-09M双相不锈钢中铁素体的EBSD像
图9  热老化铸态Z3CN20-09M双相不锈钢冲击断裂过程示意图
图10  Z3CN20-09M双相不锈钢中取向相同的铁素体在断裂时形成的解理小平面
图11  锻态Z3CN20-09M双相不锈钢中铁素体的EBSD像
图12  热老化锻态Z3CN20-09M双相不锈钢冲击断裂过程示意图
[1] Wu J.Duplex Stainless Steel [M]. Beijing: Metallurgy Industry Press, 1991: 1
[1] (吴玖. 双相不锈钢 [M]. 北京: 冶金工业出版社, 1991: 1)
[2] Chung H M.Aging and life prediction of cast duplex stainless steel components[J]. Int. J. Pressure Vessels Piping, 1992, 50: 179
[3] Hau?ild P, Berdin C, Bompard P, et al.Ductile fracture of duplex stainless steel with casting defects[J]. Int. J. Pressure Vessels Piping, 2001, 78: 607
[4] Clark C A, Guha P.Improvements in corrosion resistance, mechanical properties, and weldability of duplex austenitic/ferritic steels[J]. Mater. Corros., 1983, 34: 27
[5] Tucker J D, Miller M K, Young G A.Assessment of thermal embrittlement in duplex stainless steels 2003 and 2205 for nuclear power applications[J]. Acta Mater., 2015, 87: 15
[6] Weng K L, Chen H R, Yang J R.The low-temperature aging embrittlement in a 2205 duplex stainless steel[J]. Mater. Sci. Eng., 2004, A379: 119
[7] Yao Y H, Wei J F, Wang Z P, et al.Effect of long-term thermal aging on the mechanical properties of casting duplex stainless steels[J]. Mater. Sci. Eng., 2012, A551: 116
[8] Here?ú S, Sennour M, Balbi M, et al.Influence of dislocation glide on the spinodal decomposition of fatigued duplex stainless steels[J]. Mater. Sci. Eng., 2011, A528: 7636
[9] Li S L, Wang Y L, Li S X, et al.Microstructures and mechanical properties of cast austenite stainless steels after long-term thermal aging at low temperature[J]. Mater. Des., 2013, 50: 886
[10] Miller M K, Hyde J M, Cerezo A, et al.Comparison of low temperature decomposition in Fe-Cr and duplex stainless steels[J].
[10] Appl. Surf. Sci., 1995, 87-88: 323
[11] Sahu J K, Krupp U, Ghosh R N, et al.Effect of 475 ℃ embrittlement on the mechanical properties of duplex stainless steel[J]. Mater. Sci. Eng., 2009, A508: 1
[12] Kawaguchi S, Sakamoto N, Takano G, et al.Microstructural changes and fracture behavior of CF8M duplex stainless steels after long-term aging[J]. Nucl. Eng. Des., 1997, 174: 273
[13] Li S L.Thermal aging of Z3CN20-09M steels in the primary circuit piping of nuclear power plants [D]. Beijing: University of Science and Technology Beijing, 2013
[13] (李时磊. 核电站一回路管道Z3CN20-09M不锈钢的热老化研究 [D]. 北京: 北京科技大学, 2013)
[14] Li S L, Wang Y L, Zhang H L, et al.Microstructure evolution and impact fracture behaviors of Z3CN20-09M stainless steels after long-term thermal aging[J]. J. Nucl. Mater., 2013, 433: 41
[15] Kokawa H, Shimada M, Michiuchi M, et al.Arrest of weld-decay in 304 austenitic stainless steel by twin-induced grain boundary engineering[J]. Acta Mater., 2007, 55: 5401
[16] West E A, Was G S.IGSCC of grain boundary engineered 316L and 690 in supercritical water[J]. J. Nucl. Mater., 2009, 392: 264
[17] Shi F, Li X W, H Y T, et al. Optimization of grain boundary character distribution in Fe-18Cr-18Mn-0.63N high-nitrogen austenitic stainless steel[J]. Acta Metall. Sin.(Engl. Lett.), 2013, 26: 497
[18] Shimada M, Kokawa H, Wang Z J, et al.Optimization of grain boundary character distribution for intergranular corrosion resistant 304 stainless steel by twin-induced grain boundary engineering[J]. Acta Mater., 2002, 50: 2331
[19] Tsurekawa S, Nakamichi S, Watanabe T.Correlation of grain boundary connectivity with grain boundary character distribution in austenitic stainless steel[J]. Acta Mater., 2006, 54: 3617
[20] Hu G X, Cai X, Rong Y H.Fundamentals of Materials Science [M]. 3rd Ed., Shanghai: Shanghai Jiao Tong University Press, 2010: 3
[20] (胡赓祥, 蔡珣, 戎咏华. 材料科学基础 [M]. 第3版, 上海: 上海交通大学出版社, 2010: 3)
[21] Li S L, Wang Y L, Wang X T, et al.Effects of ferrite content on the mechanical properties of thermal aged duplex stainless steels[J]. Mater. Sci. Eng., 2015, A625: 186
[22] Timofeev B T, Nikolaev Y K.About the prediction and assessment of thermal embrittlement of Cr-Ni austenitic-ferritic weld metal and castings at the ageing temperatures 260-425 ℃[J]. Int. J. Pressure Vessels Piping, 1999, 76: 849
[23] Li S L, Wang Y L, Zhang H L, et al.Effects of prior solution treatment on thermal aging behavior of duplex stainless steels[J]. J. Nucl. Mater., 2013, 441: 337
[24] Pettersson N, Wessman S, Thuvander M, et al.Nanostructure evolution and mechanical property changes during aging of a super duplex stainless steel at 300 ℃[J]. Mater. Sci. Eng., 2016, A647: 241
[25] Li S L, Wang Y L, Li S X, et al.Effect of long term aging on the microstructure and mechanical properties of cast austenitic stainless steels[J]. Acta Metall. Sin., 2010, 46: 1186
[25] (李时磊, 王艳丽, 李树肖等. 长期热老化对铸造奥氏体不锈钢组织和性能的影响[J]. 金属学报, 2010, 46: 1186)
[26] Zheng K, Wang Y L, Li S L, et al.The microstructure and tensile fracture behavior of long term thermal aged Z3CN20-09M stainless steel[J]. Acta Metall. Sin., 2013, 49: 175
[26] (郑凯, 王艳丽, 李时磊等. 长期热老化后Z3CN20-09M不锈钢的微观组织与拉伸断裂行为[J]. 金属学报, 2013, 49: 175)
[27] Ghosh A, Kundu S, Chakrabarti D.Effect of crystallographic texture on the cleavage fracture mechanism and effective grain size of ferritic steel[J]. Scr. Mater., 2014, 81: 8
[1] 谷瑞成, 张健, 张明阳, 刘艳艳, 王绍钢, 焦大, 刘增乾, 张哲峰. 三维互穿结构SiC晶须骨架增强镁基复合材料制备及其力学性能[J]. 金属学报, 2022, 58(7): 857-867.
[2] 吴进, 杨杰, 陈浩峰. 纳入残余应力时不同拘束下DMWJ的断裂行为[J]. 金属学报, 2022, 58(7): 956-964.
[3] 彭子超, 刘培元, 王旭青, 罗学军, 刘健, 邹金文. 不同服役条件下FGH96合金的蠕变特征[J]. 金属学报, 2022, 58(5): 673-682.
[4] 赵永好, 毛庆忠. 纳米金属结构材料的韧化[J]. 金属学报, 2022, 58(11): 1385-1398.
[5] 胡晨, 潘帅, 黄明欣. 高强高韧异质结构温轧TWIP[J]. 金属学报, 2022, 58(11): 1519-1526.
[6] 范国华, 缪克松, 李丹阳, 夏夷平, 吴昊. 从局域应力/应变视角理解异构金属材料的强韧化行为[J]. 金属学报, 2022, 58(11): 1427-1440.
[7] 陈瑞润, 陈德志, 王琪, 王墅, 周哲丞, 丁宏升, 傅恒志. Nb-Si基超高温合金及其定向凝固工艺的研究进展[J]. 金属学报, 2021, 57(9): 1141-1154.
[8] 陈果, 王新波, 张仁晓, 马成悦, 杨海峰, 周利, 赵运强. 搅拌头转速对2507双相不锈钢搅拌摩擦加工组织及性能的影响[J]. 金属学报, 2021, 57(6): 725-735.
[9] 倪珂, 杨银辉, 曹建春, 王刘行, 刘泽辉, 钱昊. 18.7Cr-1.0Ni-5.8Mn-0.2NNi型双相不锈钢的大变形热压缩软化行为[J]. 金属学报, 2021, 57(2): 224-236.
[10] 张瑞, 刘鹏, 崔传勇, 曲敬龙, 张北江, 杜金辉, 周亦胄, 孙晓峰. 国内航空发动机涡轮盘用铸锻难变形高温合金热加工研究现状与展望[J]. 金属学报, 2021, 57(10): 1215-1228.
[11] 刘庆琦, 卢晔, 张翼飞, 范笑锋, 李瑞, 刘兴硕, 佟雪, 于鹏飞, 李工. Al19.3Co15Cr15Ni50.7高熵合金的热变形行为[J]. 金属学报, 2021, 57(10): 1299-1308.
[12] 李天瑞, 刘国怀, 于少霞, 王文娟, 张风奕, 彭全义, 王昭东. 直接包套轧制铸态Ti-46Al-8Nb合金的组织特征及热变形机制[J]. 金属学报, 2020, 56(8): 1091-1102.
[13] 周红伟, 白凤梅, 杨磊, 陈艳, 方俊飞, 张立强, 衣海龙, 何宜柱. 1100 MPa级高强钢的低周疲劳行为[J]. 金属学报, 2020, 56(7): 937-948.
[14] 邓亚辉, 杨银辉, 蒲超博, 倪珂, 潘晓宇. Mn23%CrNi型双相不锈钢高温拉伸行为的影响[J]. 金属学报, 2020, 56(7): 949-959.
[15] 于家英, 王华, 郑伟森, 何燕霖, 吴玉瑞, 李麟. 热浸镀锌高强汽车板界面组织对其拉伸断裂行为的影响[J]. 金属学报, 2020, 56(6): 863-873.