Please wait a minute...
金属学报  2016, Vol. 52 Issue (10): 1249-1258    DOI: 10.11900/0412.1961.2016.00315
  本期目录 | 过刊浏览 |
Cu系纳米金属多层膜微柱体的形变与损伤及其尺寸效应*
孙军(),张金钰,吴凯,刘刚
西安交通大学金属材料强度国家重点实验室, 西安 710049
SIZE EFFECTS ON THE DEFORMATION AND DAMAGEOF Cu-BASED METALLIC NANOLAYEREDMICRO-PILLARS
Jun SUN(),Jinyu ZHANG,Kai WU,Gang LIU
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
全文: PDF(1051 KB)   HTML
  
摘要: 

纳米金属多层膜材料已成为目前高性能微元器件以及互连结构的核心材料体系, 其服役过程中的变形损伤与断裂是导致系统失效的关键因素. 以本课题组近年来的研究结果为基础, 结合当前国内外有关金属多层膜微柱体塑性变形行为研究的最新进展, 阐述了金属多层膜微柱体微观结构-尺寸约束-服役性能三者之间的关联性, 揭示了金属多层膜微柱体变形模式与损伤的内在规律, 归纳了晶体/晶体与晶体/非晶两类层状结构材料加工硬化/软化行为的微观机理, 并对纳米金属多层膜研究的发展趋势进行了展望.

关键词 纳米金属多层膜微柱体塑性变形形变损伤尺寸效应    
Abstract

The nanostructured metallic multilayers (NMMs) are widely used as essential components of high performance microelectronics and interconnect structures. The deformation and damage of NMMs is the essential factor leading to the structural failure of these systems. In this paper, based on these experimental results achieved by the authors, as well as the state-of-the-art and progress at home and abroad in the plastic deformation behavior of micropillars of Cu-based NMMs, the correlation of microstructure-size constraint-mechanical performance in the Cu-based nanolayered micropillars is illustrated. The universality of their deformation modes and internal damage mechanisms are revealed, and the work hardening /softening behaviors of two types of nanolaminates, including crystalline/crystalline and crystalline/amorphous NMMs, are summarized. Finally, a brief prospect on the studies of NMMs in future is suggested.

Key wordsnanostructured metallic multilayer    micro-pillar    plastic deformation    fracture and damage    size effect
收稿日期: 2016-07-19      出版日期: 2016-08-25
ZTFLH:     
基金资助:* 国家重点基础研究发展计划项目 2010CB631003, 国家自然科学基金项目51571157, 51321003, 51322104和51201123, 高等学校学科创新引智计划项目B06025及陕西省自然科学基金基础研究计划项目2015JM5158资助

引用本文:

孙军, 张金钰, 吴凯, 刘刚. Cu系纳米金属多层膜微柱体的形变与损伤及其尺寸效应*[J]. 金属学报, 2016, 52(10): 1249-1258.
Jun SUN, Jinyu ZHANG, Kai WU, Gang LIU. SIZE EFFECTS ON THE DEFORMATION AND DAMAGEOF Cu-BASED METALLIC NANOLAYEREDMICRO-PILLARS. Acta Metall, 2016, 52(10): 1249-1258.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2016.00315      或      http://www.ams.org.cn/CN/Y2016/V52/I10/1249

图1  晶体/晶体(fcc/bcc, fcc/fcc, fcc/hcp)与晶体/非晶体系多层膜硬度(H)与单层厚度(h)的关系[33].
图2  晶体/晶体与晶体/非晶体系纳米多层膜微柱体最大强度与h和?的关系
图3  不同微观结构Cu与Cu系多层膜微柱体的应变速率敏感性指数与塑性应变量的关系[49]
图4  金属单层/多层薄膜材料θ-h和单晶Cu微柱体θ-?关系图[38,39,57]及不同多层膜微柱体n-h和多晶Cu n-d关系[58-60]
图5  不同体系多层膜微柱变形模式图
图6  Cu/Zr多层膜微柱形变损伤机制图[38]
图7  Cu/Cu-Zr晶体/非晶多层膜微柱变形模式图
[1] Was G S, Foecke T.Thin Solid Films, 1996; 286: 1
[2] Li Y P, Zhang G P.Acta Mater, 2010; 58: 3877
[3] Zhang J Y, Zhang X, Wang R H, Lei S Y, Zhang P, Niu J J, Liu G, Zhang G J, Sun J.Acta Mater, 2011; 59: 7368
[4] Romig Jr A D, Dugger M T, McWhorter P J.Acta Mater, 2003; 51: 5837
[5] Fullwood D T, Niezgoda S R, Adams B L, Kalidindi S R.Prog Mater Sci, 2010; 55: 477
[6] Beyerlein I J, Demkowicz M J, Misra A, Uberuaga B P.Prog Mater Sci, 2015; 74: 125
[7] Greer J R, de Hosson J T M.Prog Mater Sci, 2011; 56: 654
[8] Zhu T, Li J.Prog Mater Sci, 2010; 55: 710
[9] Uchic M D, Shade P A, Dimiduk D M.Annu Rev Mater Res, 2009; 39: 361
[10] Nan C W.Heterogeneous Materials Physics: Microstructure and Performance. Beijing: Science Press, 2005: 1
[10] (南策文. 非均质材料物理-显微结构-性能关联. 北京: 科学出版社, 2005: 1)
[11] Cammarata R C.Prog Surf Sci, 1994; 46: 1
[12] Hoagland R G, Kurtz R J, Henager C H.Scr Mater, 2004; 50: 775
[13] Hoagland R G, Mitchell T E, Hirth J P, Kung H.Phil Mag, 2002; 82: 643
[14] Wang J, Hoagland R G, Hirth J P, Misra A.Acta Mater, 2008; 56: 5685
[15] Wang J, Misra A, Hoagland R G, Hirth J P.Acta Mater, 2012; 60: 1503
[16] Wang Y M, Li J, Hamza A V, Barbee J T W.Proc Natl Acad Sci USA, 2007; 104: 11155
[17] Zhang J Y, Zhang X, Liu G, Zhang G J, Sun J.Scr Mater, 2010; 63: 101
[18] Zhang J Y, Niu J J, Zhang X, Zhang P, Liu G, Zhang G J, Sun J.Mater Sci Eng, 2012; A543: 139
[19] Zhang J Y, Zhang P, Zhang X, Wang R H, Liu G, Zhang G J, Sun J.Mater Sci Eng, 2012; A545: 118
[20] Zhang J Y, Liu Y, Chen J, Chen Y, Liu G, Zhang X, Sun J.Mater Sci Eng, 2012; A552: 392
[21] Wu K, Zhang J Y, Liu G, Zhang P, Cheng P M, Zhang G J, Sun J.Acta Mater, 2013; 61: 7889
[22] Wu K, Zhang J Y, Zhang P, Wang Y Q, Liu G, Zhang G J, Sun J.Mater Sci Eng, 2014; A613: 130
[23] Wu K, Zhang J Y, Li J, Wang Y Q, Liu G, Sun J.Acta Mater, 2015; 100: 344
[24] Li Y P, Zhang G P, Wang W, Tan J, Zhu S J.Scr Mater, 2007; 57: 117
[25] Li Y P, Zhu X F, Tan J, Wu B, Wang W, Zhang G P.J Mater Res, 2009; 24: 728
[26] Wen S P, Zong R L, Zeng F, Gao Y, Pan F.Acta Mater, 2007; 55: 345
[27] Zhu X Y, Liu X J, Zong R L, Zeng F, Pan F.Mater Sci Eng, 2010; A527: 1243
[28] Liu Y, Bufford D, Wang H, Sun C, Zhang X.Acta Mater, 2011; 59: 1924
[29] Liu Y, Bufford D, Rios S, Wang H, Chen J, Zhang J Y, Zhang X.J Appl Phys, 2012; 111: 073526
[30] Lai W S, Yang M J.Appl Phys Lett, 2007; 90: 181917
[31] Zhang J Y, Liu G, Zhang X, Zhang G J, Sun J, Ma E.Scr Mater, 2010; 62: 333
[32] Wang Y Q, Zhang J Y, Liang X Q, Wu K, Liu G, Sun J.Acta Mater, 2015; 95: 132
[33] Zhang J Y, Liu G, Sun J.Mater China, 2016; 35: 31
[33] (张金钰, 刘刚, 孙军. 中国材料进展, 2016; 35: 31)
[34] Mara N A, Bhattacharyya D, Dickerson P, Hoagland R G, Misra A.Appl Phys Lett, 2008; 92: 231903
[35] Mara N A, Bhattacharyya D, Hirth J P, Dickerson P, Misra A.Appl Phys Lett, 2010; 97: 021909
[36] Zhang J Y, Lei S Y, Liu Y, Niu J J, Chen Y, Liu G, Zhang X, Sun J.Acta Mater, 2012; 60: 1610
[37] Zhang J Y, Liu G, Lei S Y, Niu J J, Sun J.Acta Mater, 2012; 60: 4054
[38] Zhang J Y, Li J, Liang X Q, Liu G, Sun J.Sci Rep, 2014; 4: 4205
[39] Zhang J Y, Zhang X, Wang R H, Lei S Y, Zhang P, Niu J J, Liu G, Zhang G J, Sun J.Acta Mater, 2012; 60: 7183
[40] Zhang J Y, Liu G, Sun J.Sci Rep, 2013; 3: 2324
[41] Kim Y B, Budiman A S, Baldwin J K, Mara N A, Misra A.J Mater Res, 2012; 27: 592
[42] Han S M, Phillips M A, Nix W D.Acta Mater, 2009; 57: 4473
[43] Wang J, Yang C, Hodgson P D.Scr Mater, 2013; 69: 626
[44] Zhang J Y, Cui J C, Liu G, Sun J.Scr Mater, 2013; 68: 639
[45] Zhang J Y, Liang X Q, Zhang P, Wu K, Liu G, Sun J.Acta Mater, 2014; 66: 302
[46] Dayal P, Quadir M Z, Kong C, Savvides N, Hoffman M.Thin Solid Films, 2011; 519: 3213
[47] Wei Q.J Mater Sci, 2007; 42: 1709
[48] Zhang J Y, Liu G, Sun J.Int J Plast, 2013; 50: 1
[49] Zhang J Y, Liu G, Sun J.Acta Mater, 2013; 61: 6868
[50] Zhang J Y, Wang Y Q, Wu K, Zhang P, Liu G, Zhang G J, Sun J.Mater Sci Eng, 2014; A612: 28
[51] Niu J J, Zhang J Y, Liu G, Zhang P, Lei S Y, Zhang G J, Sun J.Acta Mater, 2012; 60: 3677
[52] Zhang J Y, Wang Y Q, Liu G, Sun J.Appl Surf Sci, 2014; 321: 19
[53] Carlton C E, Ferreira P J.Acta Mater, 2007; 55: 3749
[54] Kocks U F, Mecking H.Prog Mater Sci, 2003; 48: 171
[55] Misra A, Zhang X, Hammon D, Hoagland R G.Acta Mater, 2005; 53: 221
[56] Yan J W, Zhu X F, Yang B, Zhang G P.Phys Rev Lett, 2013; 110: 155502
[57] Gruber P A, B?hm J, Onuseit F, Wanner A, Spolenak R, Arzt E.Acta Mater, 2008; 56: 2318
[58] Lei S Y, Zhang J Y, Niu J J, Liu G, Zhang X, Sun J.Scr Mater, 2012; 66: 706
[59] Lu L, Chen X, Huang X, Lu K.Science, 2009; 323: 607
[60] Bhattacharyya D, Mara N A, Dickerson P, Hoagland R G, Misra A.Acta Mater, 2011; 59: 3804
[61] Huang X, Hansen N, Tsuji N.Science, 2006; 312: 249
[62] Knorr I, Cordero N M, Lilleodden E T, Volkert C A.Acta Mater, 2013; 61: 4984
[63] Li N, Mara N A, Wang Y Q, Nastasi M, Misra A.Scr Mater, 2011; 64: 974
[64] Anderson P M, Foecke T, Hazzledine P M.Mater Res Soc Bull, 1999; 24: 27
[65] Misra A, Verdier M, Kung H, Embury J D, Hirth J P.Scr Mater, 1999; 41: 973
[66] Zhu X F, Li Y P, Zhang G P, Tan J, Liu Y.Appl Phys Lett, 2008; 92: 161905
[67] Zhang J, Zhang J Y, Liu G, Zhao Y, Sun J.Thin Solid Films, 2009; 517: 2936
[68] Donohue A, Spaepen F, Hoagland R G, Misra A.Appl Phys Lett, 2007; 91: 241905
[69] Chen C Q, Pei Y T, De Hosson J T M.Acta Mater, 2010; 58: 189
[70] Zhang J Y, Liu G, Sun J.Acta Mater, 2014; 66: 22
[71] Kim J Y, Jang D C, Greer J R.Adv Funct Mater, 2011; 21: 4550
[72] Kuzmin O V, Pei Y T, Chen C Q, De Hosson J T M.Acta Mater, 2012; 60: 889
[73] Jang D, Greer J R.Nat Mater, 2010; 9: 215
[74] Kiener D, Minor A M.Acta Mater, 2011; 59: 1328
[75] Beyerlein I J, Caro A, Demkowicz M J, Mara N A, Misra A, Uberuaga B P.Mater Today, 2013; 16: 443
[76] Yu K Y, Liu Y, Fu E G, Wang Y Q, Myers M T, Wang H, Shao L, Zhang X.J Nucl Mater, 2013; 440: 310
[77] Zhang P, Zhang J Y, Li J, Liu G, Wu K, Wang Y Q, Sun J.Acta Mater, 2014; 76: 221
[78] Zhang P, Zhang J Y, Li J, Liu G, Wu K, Wang Y Q, Sun J.J Mater Sci, 2015; 50: 1901
[79] Wang Y Q, Hou Z Q, Zhang J Y, Liang X Q, Liu G, Zhang G J, Sun J.Acta Metall Sin (Engl Lett), 2016; 29: 156
[80] Zhang J Y, Wang Y Q, Liang X Q, Zeng F L, Liu G, Sun J.Acta Mater, 2015; 92: 140
[81] Liang X Q, Zhang J Y, Wang Y Q, Wu S H, Zeng F L, Wu K, Liu G, Zhang G J, Sun J.Mater Sci Eng, 2016; A672: 153
[1] 张广平, 陈红蕾, 罗雪梅, 张滨. 微纳米尺度金属导电材料热疲劳研究进展[J]. 金属学报, 2018, 54(3): 357-366.
[2] 张晓嵩,徐勇,张士宏,程明,赵永好,唐巧生,丁月霞. 塑性变形及固溶处理对奥氏体不锈钢晶间腐蚀性能的协同作用研究[J]. 金属学报, 2017, 53(3): 335-344.
[3] 张金睿, 张晏玮, 郝玉琳, 李述军, 杨锐. 生物医用Ti-24Nb-4Zr-8Sn单晶合金塑性变形行为研究[J]. 金属学报, 2017, 53(10): 1385-1392.
[4] 杨蕊,潘艳,陈威,孙巧艳,肖林,孙军. 微尺度Ti-10V-2Fe-3Al单晶压缩变形行为及其微观机制*[J]. 金属学报, 2016, 52(2): 135-142.
[5] 邓洁,马佳伟,许以阳,沈耀. 马氏体的分布对双相钢微观变形行为和力学性能的影响[J]. 金属学报, 2015, 51(9): 1092-1100.
[6] 周立初,胡显军,马驰,周雪峰,蒋建清,方峰. 珠光体层片取向对冷拔珠光体钢丝形变的影响*[J]. 金属学报, 2015, 51(8): 897-903.
[7] 王晓钢,姜潮,韩旭. Ni单晶体塑性应变的非均匀性与加工硬化*[J]. 金属学报, 2015, 51(12): 1457-1464.
[8] 孙朝阳,郭祥如,郭宁,杨竞,黄杰. 耦合孪生的TWIP钢多晶体塑性变形行为研究*[J]. 金属学报, 2015, 51(12): 1507-1515.
[9] 徐平光,殷匠,张书彦. 充氢超高强度钢拉伸变形的原位中子衍射研究*[J]. 金属学报, 2015, 51(11): 1297-1305.
[10] 黄晓旭. 金属强度的尺寸效应*[J]. 金属学报, 2014, 50(2): 137-140.
[11] 陶乃镕, 卢柯. 纳米结构金属材料的塑性变形制备技术*[J]. 金属学报, 2014, 50(2): 141-147.
[12] 倪颂, 廖晓舟, 朱运田. 剧烈塑性变形对块体纳米金属材料结构和力学性能的影响*[J]. 金属学报, 2014, 50(2): 156-168.
[13] 张金钰, 刘刚, 孙军. 纳米金属多层膜的变形与断裂行为及其尺寸效应*[J]. 金属学报, 2014, 50(2): 169-182.
[14] 李晓雁. 纳米晶Al薄膜Bauschinger效应的分子动力学模拟*[J]. 金属学报, 2014, 50(2): 219-225.
[15] 李烨, 张龙, 朱正旺, 李宏, 王爱民, 张海峰. 热处理对一种高强Zr-Ti合金组织和力学性能的影响*[J]. 金属学报, 2014, 50(1): 19-24.