Please wait a minute...
金属学报  2017, Vol. 53 Issue (5): 559-566    DOI: 10.11900/0412.1961.2016.00312
  论文 本期目录 | 过刊浏览 |
低偏析技术的发展
张玉妥1,2,陈波2,3,刘奎2,3,李殿中2,3,李依依2,3()
1 沈阳理工大学材料科学与工程学院 沈阳 110159
2 中国科学院金属研究所 沈阳 110016
3 中国科学技术大学材料科学与工程学院 沈阳 110016
Development of Low Segregation Technology
Yutuo ZHANG1,2,Bo CHEN2,3,Kui LIU2,3,Dianzhong LI2,3,Yiyi LI2,3()
1 College of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159, China
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3 School of Materials Science and Engineering, University of Science and Technology of China,Shenyang 110016, China
全文: PDF(6319 KB)   HTML
  
摘要: 

师昌绪先生领导的铸造高温合金团队80年代初开始了低偏析技术的研究。将低偏析技术扩展应用到火电大轴用30Cr2Ni4MoV钢、核电蒸发器传热管用690合金以及核燃料用铀合金。通过解剖3支百吨常压电弧炉熔炼的30Cr2Ni4MoV钢锭,发现控制微量元素O、Al含量可以显著减少偏析。研究了690合金、U-6Nb合金与高碳铀的凝固行为,S、N扩大了690合金的凝固温度区间,并且S的影响大于N的影响;通过控制微量元素S、N含量可使690合金组织中成分均匀。在具有放射性元素的U-6Nb合金和高碳铀中,计算了U-6Nb的凝固温度区间为183 ℃;在高碳铀中,当C含量由0.01%增加到0.03%时,其凝固温度区间由40 ℃增加到了75 ℃;C扩大了高碳铀的凝固温度区间。U-6Nb合金和高碳铀的凝固偏析严重,采用低偏析技术控制U-6Nb合金中的C、N、O含量及高碳铀中C、O含量,达到了减轻凝固偏析的效果,表明低偏析技术具有普适性。

关键词 偏析低偏析技术微量元素凝固区间    
Abstract

The minor element in alloy greatly aggravate the segregation of main elements and formation of harmful phase, resulting the deterioration of mechanical properties. Low segregation technology of cast superalloy was pioneered by Prof. Shi Changxu and co-workers in the early eighties. The technology is to control the content of minor element, such as P, Si, B and Zr, to lower the solidification segregation in the super-alloy. The working temperature and mechanical properties of superalloy can be increased greatly by using the low segregation technology. A series of alloys, such as M17 and GH738 with low segregation and excellent properties, had been developed. This study extends low segregation technology to 30Cr2Ni4MoV steel of large shaft for thermal power equipment, 690 alloy for steam generator tube in nuclear power plant, and uranium alloy for nuclear fuel. The solidification and segregation behaviour in the 30Cr2Ni4MoV steel was investigated, it is found that the minor elements of O and Al are essential for the formation of serious solidification segregation in the steel. Moreover, the solidification behavior of 690 alloy has been studied. S and N increases solidification interval, and the effect of S is greater than that of N. The solidification segregation of 690 alloy can be alleviated by controlling the contents of the S and N. Finally, the solidification temperature interval of high carbon uranium is calculated. With the car bon content increasing from 0.01% to 0.03%, the solidification interval is from 40 ℃ to 75 ℃. Thus, for the radioactive uranium alloys, minor elements show segregation to some extent in the residual liquids of final solidification zone. The minor elements in U-6Nb alloy are C, N and O. For uranium with high carbon content, the minor elements are C and O.

Key wordssegregation    low segregation technology    minor element    solidification interval
收稿日期: 2016-07-20      出版日期: 2017-03-15

引用本文:

张玉妥,陈波,刘奎,李殿中,李依依. 低偏析技术的发展[J]. 金属学报, 2017, 53(5): 559-566.
Yutuo ZHANG,Bo CHEN,Kui LIU,Dianzhong LI,Yiyi LI. Development of Low Segregation Technology. Acta Metall, 2017, 53(5): 559-566.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2016.00312      或      http://www.ams.org.cn/CN/Y2017/V53/I5/559

图1  多元合金凝固区间示意图
图2  按原工艺生产的第一支100 t 30Cr2Ni4MoV钢锭[21]
图3  通过脱氧熔炼的第二支和第三支100 t 30Cr2Ni4MoV钢锭[20]
图4  S、N含量对690合金凝固温度的影响[23]
图5  不同S含量时690合金1310 ℃等温凝固组织[23]
图6  不同N含量690合金在1355 ℃等温凝固时Cr、Ti、S、C、N在残余液相中的分布[23]
图7  低偏析690合金(7×10-6 S、10×10-6 N)不同温度下的凝固组织[24]
图8  U-Nb合金相图及合金凝固方式[27]
图9  计算的U-Nb合金的液相线与固相线
图10  电弧炉熔炼U-6Nb合金铸态组织[28]
[1] Zhou Y H, Hu Z Q, Jie W Q, et al.Solidification Technology [M]. Beijing: Machinery Industry Press, 1998: 13
[1] (周尧和, 胡壮麒, 介万奇等. 凝固技术[M]. 北京: 机械工业出版社, 1998: 13)
[2] Chen P C, Zhu L S, Li Z.Principle of Materials Processing [M]. Beijing: Machinery Industry Press, 2001: 28, 29, 104, 254
[2] (陈平昌, 朱六姝, 李赞. 材料成形原理 [M]. 北京: 机械工业出版社, 2001: 28, 29, 104, 254)
[3] Zhu Y X, Zhang S N, Xu L Y, et al.The influence of boron on porosity of cast Ni-base superalloys[J]. Acta Metall. Sin., 1985, 21: A1
[3] (朱耀宵, 张顺南, 徐乐英等. 硼与镍基高温合金中的疏松[J]. 金属学报, 1985, 21: A1)
[4] Zhu H Q, Hu Z Q, Zhu Y X, et al.Effect of phosphorus on solidification process and segregation of directionally solidified IN738 superalloy[J]. Metall. Mater. Trans., 1995, 26B: 831
[5] Zhang B D, Tong Y J, Zhang J Y, et al.Microstructure and solidification characteristics of M91 cast Ni-base superalloy[J]. Acta Metall. Sin., 1990, 26: A438
[5] (张炳大, 佟英杰, 张嘉媛等. M91镍基铸造高温合金的组织和凝固特性[J]. 金属学报, 1990, 26: A438)
[6] Zhu Y X, Zhang S N, Zhang T X, et al.A new way to improve the superalloys [A]. Superalloys 1992[C]. Warrendale, PA: TMS, 1992: 145
[7] Hu Z Q, Tang Y J, Zhang J S, et al.Effect of minor element on directional solidification of IN738 alloy[J]. J. Mater. Eng., 1992, (S1): 95
[7] (胡壮麒, 唐亚俊, 张济山等. 微量元素对定向凝固IN738合金的影响(基础研究)[J]. 材料工程, 1992, (S1): 95)
[8] Li Y A, Tang Y J, Zhang J H, et al.Influence of Zr on the solidification behavior and stress rupture property of DZ38 superalloy[J]. Mater. Sci. Process, 1993, 7: 1
[9] Zhu H Q, Tang Y J, Guo S R, et al.Effects of P, Zr and B on microstructure and segregation of directionally solidified IN738 super-alloy[J]. Acta Metall. Sin., 1994, 30: A312
[9] (朱洪群, 唐亚俊, 郭守仁等. P, Zr, B对定向凝固IN738合金组织
[1] 侯自兵,曹江海,常毅,王伟,陈晗. 基于分形维数的模具钢电渣重熔铸坯碳偏析形貌特征研究[J]. 金属学报, 2017, 53(7): 769-777.
[2] 宁礼奎,佟健,刘恩泽,谭政,纪慧思,郑志. Ru对一种高Cr镍基单晶高温合金凝固组织的影响[J]. 金属学报, 2017, 53(4): 423-432.
[3] 余建波, 侯渊, 张超, 杨志彬, 王江, 任忠鸣. 静磁场对新型Co-Al-W基高温合金定向凝固组织的影响[J]. 金属学报, 2017, 53(12): 1620-1626.
[4] 邓平, 彭群家, 韩恩厚, 柯伟, 孙晨, 夏海鸿, 焦治杰. 国产核用不锈钢辐照损伤研究[J]. 金属学报, 2017, 53(12): 1588-1602.
[5] 李军,葛鸿浩,GE Honghao,WU Menghuai,李建国. 基于热溶质对流及晶粒运动的柱状晶-非球状等轴晶混合三相模型*[J]. 金属学报, 2016, 52(9): 1096-1104.
[6] 钟华,李传军,王江,任忠鸣,钟云波,玄伟东. 强磁场对定向凝固Al-4.5Cu合金微观偏析的影响*[J]. 金属学报, 2016, 52(5): 575-582.
[7] 闫二虎,孙立贤,徐芬,徐达鸣. 基于Thermo-Calc和微观偏析统一模型对Al-6.32Cu-25.13Mg合金凝固路径的预测*[J]. 金属学报, 2016, 52(5): 632-640.
[8] 孙倩,江鸿翔,赵九洲. 微量元素Bi对Al-Pb合金凝固过程及显微组织的影响*[J]. 金属学报, 2016, 52(4): 497-504.
[9] 罗银屏, 周亦胄, 刘金来. Ru和Cr在一种无Re镍基单晶高温合金凝固过程中的作用[J]. 金属学报, 2014, 50(9): 1025-1030.
[10] 叶欣, 华学明, 王敏, 楼松年. 镍基Inconel-718合金TIG焊部分熔化区组织变化*[J]. 金属学报, 2014, 50(8): 1003-1010.
[11] 王明, 马党参, 刘振天, 周健, 迟宏宵, 代建清. Nb对芯棒用H13钢偏析、液析碳化物及力学性能的影响*[J]. 金属学报, 2014, 50(3): 285-293.
[12] 窦坤, 卿家胜, 王雷, 张晓峰, 王宝, 刘青, 董洪标. 基于微观偏析模型的连铸方坯内裂纹敏感性研究[J]. 金属学报, 2014, 50(12): 1505-1512.
[13] 贾鹏,王恩刚,鲁辉,赫冀成. 电磁场对Inconel 625合金凝固组织及力学性能的影响[J]. 金属学报, 2013, 49(12): 1573-1580.
[14] 刘刚 刘林 张胜霞 杨初斌 张军 傅恒志. Re和Ru对镍基单晶高温合金组织偏析的影响[J]. 金属学报, 2012, 48(7): 845-852.
[15] 封少波,张楠楠,罗兴宏. 偏析对DZ483镍基高温合金糊状区内液相密度的影响[J]. 金属学报, 2012, 48(5): 541-546.