Please wait a minute...
金属学报  2017, Vol. 53 Issue (5): 567-574    DOI: 10.11900/0412.1961.2016.00307
  论文 本期目录 | 过刊浏览 |
焊接温度对碳钢/奥氏体不锈钢扩散焊接头界面组织及性能的影响
王大伟,修世超()
东北大学机械工程与自动化学院 沈阳 110819
Effect of Bonding Temperature on the Interfacial Micro-structure and Performance of Mild Steel/Austenite Stainless Steel Diffusion-Bonded Joint
Dawei WANG,Shichao XIU()
School of Mechanical Engineering & Automation, Northeastern University, Shenyang 110819, China
全文: PDF(6361 KB)   HTML
摘要: 

采用真空扩散焊接方法对Q235A低碳钢与AISI304奥氏体不锈钢进行固相扩散连接实验,研究了焊接温度对接头界面组织、力学性能和反应产物的影响。结果表明:Q235A低碳钢/AISI304奥氏体不锈钢复合界面附近形成了合金铁素体层(II区)和增C层(III区),界面两侧异相组织通过扩散结成共用晶界。在焊接温度850 ℃,焊接压力10 MPa,焊接时间60 min条件下,接头强度和韧性达到最大值,高于Q235A低碳钢母材。焊接温度过低(≤800 ℃),接头中析出碳化物Cr23C6,焊接温度过高(≥900 ℃),接头中会产生二次碳化物和金属间化合物,脆性的化合物偏析相使接头强韧性显著下降。严格控制焊接温度在850 ℃区间,并在焊后迅速淬火越过低温区,可有效避免脆性化合物偏析,从而保证扩散焊接头的性能。

关键词 低碳钢奥氏体不锈钢真空扩散焊接界面组织碳化物金属间化合物    
Abstract

The Q235A mild steel and AISI304 austenite stainless steel were subjected to solid diffusion welding by vacuum diffusion bonding approach to investigate the influence of welding temperature on the interfacial morphology, microstructural constituents and mechanical properties. The results show that the single ferrite layer (zone II) and carbon-enriched layer (zone III) were formed nearby the bonding interface of Q235A mild steel and AISI304 austenite stainless steel, and heterogeneous microstructure on both sides of interface formed a common grain boundary by diffusion. The strength and toughness of the bonded joint reached the highest values, for welding temperature of approximately 850 ℃, welding pressure of beyond 10 MPa, and welding time of approximately 60 min, which was larger than those of the Q235A mild steel layer. Otherwise, the Cr23C6 carbide easily formed at a relatively lower temperature (≤800 ℃), whereas the secondary carbides and intermetallic compounds formed at a relatively higher temperature (≥900 ℃). Both cases would dramatically deteriorate the strength-toughness of the bonded joint. Therefore, it was proposed that the brittle precipitate phases can be effectively avoided by controlling the welding temperature to approximately 850 ℃, thus ensuring the resulting performance of the bonded joint.

Key wordsmild steel    austenite stainless steel    vacuum diffusion bonding    interfacial microstructure    carbide    intermetallic compound
收稿日期: 2016-07-18      出版日期: 2017-02-22
基金资助:国家自然科学基金项目No.51375083

引用本文:

王大伟,修世超. 焊接温度对碳钢/奥氏体不锈钢扩散焊接头界面组织及性能的影响[J]. 金属学报, 2017, 53(5): 567-574.
Dawei WANG,Shichao XIU. Effect of Bonding Temperature on the Interfacial Micro-structure and Performance of Mild Steel/Austenite Stainless Steel Diffusion-Bonded Joint. Acta Metall, 2017, 53(5): 567-574.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2016.00307      或      http://www.ams.org.cn/CN/Y2017/V53/I5/567

Material Cr Ni C Si Mn P S Fe
AISI304 18.19 8.34 0.05 0.47 1.22 0.03 0.02 Bal.
Q235A - - 0.22 0.30 0.43 0.04 0.05 Bal.
表1  AISI304不锈钢和Q235A低碳钢的化学成分
图1  焊接温度850 ℃时Q235A低碳钢/AISI304不锈钢扩散焊界面附近区域的EBSD像
图2  不同温度焊接时Q235A低碳钢/AISI304不锈钢扩散焊接头OM像
图3  焊接温度900 ℃时Q235A低碳钢/AISI304不锈钢扩散焊接头的SEM像和XRD谱
Point C O Si Cr Mn Fe Ni
A 0.05 0.25 0.11 9.24 0.77 88.75 0.82
B 0.08 0.40 0.13 9.46 0.79 88.02 1.02
C 0.09 0.35 0.14 9.30 0.80 88.20 1.12
表2  图3b中点A~C的EDS结果
图4  不同焊接温度时Q235A低碳钢/AISI304不锈钢扩散焊接头元素线分布
图5  不同焊接温度Q235A低碳钢/AISI304不锈钢扩散焊界面显微硬度分布
图6  不同温度焊接的扩散焊接头拉伸试样
图6  不同N含量690合金在1355 ℃等温凝固时Cr、Ti、S、C、N在残余液相中的分布[23]
Sample σb σs δ Ak
MPa MPa % (Jcm-2)
AISI304 785 320 49.5 180.0
Q235A 420 235 29.0 120.0
1# (800 ℃) 425±1 240±1 16.0±0.2 78.8±0.5
2# (850 ℃) 425±1 240±1 28.5±0.3 119.2±0.5
3# (900 ℃) 440±2 245±2 18.9±0.3 79.4±0.5
表3  母材及3种不同试样的室温力学性能
图7  Q235A低碳钢/AISI304不锈钢扩散焊界面冲击断口形貌
[1] Khorrami M S, Mostafaei M A, Pouraliakbar H, et al.Study on microstructure and mechanical characteristics of low-carbon steel and ferritic stainless steel joints[J]. Mater. Sci. Eng., 2014, A608: 35
[2] Mas F, Martin G, Lhuissier P, et al.Heterogeneities in local plastic flow behavior in a dissimilar weld between low-alloy steel and stainless steel[J]. Mater. Sci. Eng., 2016, A667: 156
[3] Khalifeh A R, Dehghan A, Hajjari E.Dissimilar joining of AISI 304L/St37 steels by TIG welding process[J]. Acta. Metall. Sin.(Engl. Lett.), 2013, 26: 721
[4] Torkamany M J, Sabbaghzadeh J, Hamedi M J.Effect of laser welding mode on the microstructure and mechanical performance of dissimilar laser spot welds between low carbon and austenitic stainless steels[J]. Mater. Des., 2012, 34: 666
[5] Haneklaus N, Reuven R, Cionea C, et al.Tube expansion and diffusion bonding of 316L stainless steel tube-to-tube sheet joints using a commercial roller tube expander[J]. J. Mater. Process. Technol., 2016, 234: 27
[6] Kurt B, ?alik A.Interface structure of diffusion bonded duplex stainless steel and medium carbon steel couple[J]. Mater. Charact., 2009, 60: 1035
[7] Atabaki M M, Bajgholi M E, Dehkordi E H.Partial transient liquid phase diffusion bonding of zirconium alloy (Zr-2.5Nb) to stainless steel 321[J]. Mater. Des., 2012, 42: 172
[8] Deng Y Q, Sheng G M, Yin L J.Impulse pressuring diffusion bonding of titanium to stainless steel using a copper interlayer[J]. Rare Met. Mater. Eng., 2015, 44: 1041
[9] Kundu S, Chatterjee S.Interfacial microstructure and mechanical properties of diffusion-bonded titanium-stainless steel joints using a nickel interlayer[J]. Mater. Sci. Eng., 2006, A425: 107
[10] Balasubramanian M.Application of Box-Behnken design for fabrication of titanium alloy and 304 stainless steel joints with silver interlayer by diffusion bonding[J]. Mater. Des., 2015, 77: 161
[11] Yuan X J, Kang C Y.Microstructural characteristics in vacuum TLP (transient liquid phase) bonds using a novel iron-based interlayer based on duplex stainless steel base metal alloyed with a melting-point depressant[J]. Vacuum, 2014, 99: 12
[12] Wu M F, Kuang H J, Wang F J, et al.Partially transient liquid phase-diffusion bonding on Ti(C, N)-Al2O3 ceramic matrix composites using Zr/Cu/Zr as interlayer[J]. Acta Metall. Sin., 2014, 50: 619
[12] (吴铭方, 匡鸿锦, 王凤江等. Zr/Cu/Zr部分瞬间液相焊扩散连接Ti(C, N)-Al2O3陶瓷基复合材料[J]. 金属学报, 2014, 50: 619)
[13] Zhang X, Shi X H, Wang J, et al.Effect of bonding temperature on the microstructures and strengths of C/C composite/GH3044 alloy joints by partial transient liquid-phase (PTLP) bonding with multiple interlayers[J]. Acta Metall. Sin.(Engl. Lett.), 2014, 27: 663
[14] Peng F, Dong X H, Liu K, et al.Effects of strain rate and plastic work on martensitic transformation kinetics of austenitic stainless steel 304[J]. J. Iron Steel Res. Int., 2015, 22: 931
[15] Li X F, Ding W, Cao J, et al.In situ TEM observation on martensitic transformation during tensile deformation of SUS304 metastable austenitic stainless steel[J]. Acta Metall. Sin.(Engl. Lett.), 2015, 28: 302
[16] Liu H P, Liu B, Li D Z, et al.Microstructural characterization of welded joint in duplex stainless steel by laser continuous heat treatment[J]. J. Iron Steel Res. Int., 2014, 21: 710
[17] Abraham S T, Albert S K, Das C R, et al.Assessment of sensitization in AISI 304 stainless steel by nonlinear ultrasonic method[J]. Acta Metall. Sin.(Engl. Lett.), 2013, 26: 545
[18] Qi Z F.Diffusion and Phase Transition in Solid Metals [M]. Beijing: China Machine Press, 1998: 107
[18] (戚正风. 固态金属中的扩散与相变 [M]. 北京: 机械工业出版社, 1998: 107)
[19] Zhao Z Y.Alloy Steel Design [M]. Beijing: National Defense Industry Press, 1999: 250
[19] (赵振业. 合金钢设计 [M]. 北京: 国防工业出版社, 1999: 250)
[20] Cui Z Q.Metal and Heat Treatment [M]. Beijing: China Machine Press, 1993: 234
[20] (崔忠圻. 金属学与热处理 [M]. 北京: 机械工业出版社, 1993: 234)
[21] Dobrzański L A, Brytan Z, Grande M A, et al.Innovative PM duplex stainless steels obtained basing on the schaeffler diagram[J]. Arch. Mater. Sci. Eng., 2008, 30: 49
[22] Pacquentin W, Caron N, Oltra R.Effect of microstructure and chemical composition on localized corrosion resistance of a AISI 304L stainless steel after nanopulsed-laser surface melting[J]. Appl. Surf. Sci., 2015, 356: 561
[23] Gómez X, Echeberria J.Microstructure and mechanical properties of carbon steel A210-superalloy Sanicro 28 bimetallic tubes[J]. Mater. Sci. Eng., 2003, A348: 180
[24] Ghosh C, Paul A.Elucidation of bifurcation of the kirkendall marker plane in a single phase using physico-chemical approach[J]. Intermetallics, 2008, 16: 955
[25] Svoboda J, Fischer F D, Abart R.Modeling of diffusional phase transformation in multi-component systems with stoichiometric phases[J]. Acta Mater., 2010, 58: 2905
[1] 于宣, 张志豪, 谢建新. 不同Ce含量Fe-6.5%Si合金的组织、有序结构和中温拉伸塑性[J]. 金属学报, 2017, 53(8): 927-936.
[2] 陈波, 郝宪朝, 马颖澈, 查向东, 刘奎. 添加N对Inconel 690合金显微组织和晶界微区成分的影响[J]. 金属学报, 2017, 53(8): 983-990.
[3] 赵宁,邓建峰,钟毅,殷录桥. 热迁移下Ni/Sn-xCu/Ni微焊点钎焊界面金属间化合物的演变[J]. 金属学报, 2017, 53(7): 861-868.
[4] 牛志伟,叶政,刘凯凯,黄继华,陈树海,赵兴科. Al-Si-Ge钎料钎焊Cu/Al接头组织与性能研究[J]. 金属学报, 2017, 53(6): 719-725.
[5] 张志杰,黄明亮. Cu/Sn-52In/Cu微焊点液-固电迁移行为研究[J]. 金属学报, 2017, 53(5): 592-600.
[6] 周丽,崔超,贾清,马英石. γ-TiAl金属间化合物铣削加工实验与有限元模拟[J]. 金属学报, 2017, 53(4): 505-512.
[7] 陈思含,梁田,张龙,马颖澈,刘政军,刘奎. 6%Si高硅奥氏体不锈钢固溶处理过程中bcc相的演变机制研究[J]. 金属学报, 2017, 53(4): 397-405.
[8] 张晓嵩,徐勇,张士宏,程明,赵永好,唐巧生,丁月霞. 塑性变形及固溶处理对奥氏体不锈钢晶间腐蚀性能的协同作用研究[J]. 金属学报, 2017, 53(3): 335-344.
[9] 刘积厚,赵洪运,李卓霖,宋晓国,董红杰,赵一璇,冯吉才. Cu/Sn/Cu超声-TLP接头的显微组织与力学性能[J]. 金属学报, 2017, 53(2): 227-232.
[10] 刘洪喜,李正学,张晓伟,谭军,蒋业华. 热处理对钛合金表面激光原位合成高铌Ti-Al金属间化合物涂层高温抗氧化行为的影响[J]. 金属学报, 2017, 53(2): 201-210.
[11] 马德新, 王富, 温序晖, 孙德建, 刘林. CM247LC单晶高温合金中MC碳化物对γ/γ′共晶反应的影响[J]. 金属学报, 2017, 53(12): 1603-1610.
[12] 王国田, 丁宏升, 陈瑞润, 郭景杰, 傅恒志. 电流强度对冷坩埚定向凝固Ni3Al金属间化合物微观组织的影响[J]. 金属学报, 2017, 53(11): 1461-1468.
[13] 袁训华, 张启富. 22MnB5热成形钢奥氏体化时热镀Al-10%Si镀层组织的演化[J]. 金属学报, 2017, 53(11): 1495-1503.
[14] 毕宗岳,杨军,刘海璋,张万鹏,杨耀彬,田磊,黄晓江. TA1/X65复合板焊接工艺及焊缝组织和性能研究*[J]. 金属学报, 2016, 52(8): 1017-1024.
[15] 马颖澈,李硕,郝宪朝,查向东,高明,刘奎. 2种N含量不同的690合金中晶界碳化物及晶界Cr贫化研究*[J]. 金属学报, 2016, 52(8): 980-986.