Please wait a minute...
金属学报  2017, Vol. 53 Issue (4): 479-486    DOI: 10.11900/0412.1961.2016.00289
  本期目录 | 过刊浏览 |
熔融6061/4043铝合金在TC4钛合金表面的反应润湿
靳鹏1,隋然2,李富祥1,俞伟元1,林巧力1()
1 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室 兰州 730050
2 兰州工业学院材料工程学院 兰州 730050
Reactive Wetting of TC4 Titanium Alloy by Molten 6061 Al and 4043 Al Alloys
Peng JIN1,Ran SUI2,Fuxiang LI1,Weiyuan YU1,Qiaoli LIN1()
1 State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metal, Lanzhou University of Technology, Lanzhou 730050, China
2 School of Materials Engineering, Lanzhou Institute of Technology, Lanzhou 730050, China
引用本文:

靳鹏,隋然,李富祥,俞伟元,林巧力. 熔融6061/4043铝合金在TC4钛合金表面的反应润湿[J]. 金属学报, 2017, 53(4): 479-486.
Peng JIN, Ran SUI, Fuxiang LI, Weiyuan YU, Qiaoli LIN. Reactive Wetting of TC4 Titanium Alloy by Molten 6061 Al and 4043 Al Alloys[J]. Acta Metall Sin, 2017, 53(4): 479-486.

全文: PDF(5282 KB)   HTML
摘要: 

利用改良座滴法研究了高真空条件下熔融6061和4043铝合金在600~700 ℃分别与TC4钛合金的润湿行为。研究表明,Al/Ti体系属于典型的反应润湿,且铺展动力学可由反应产物控制模型描述,整个润湿过程分为先非线性铺展和后线性铺展2个阶段,即:铝合金中微量的Si元素在界面上产生了明显的富集并在界面上形成了富Si的Ti7Al5Si12;铺展过程中Ti7Al5Si12的分解对应于非线性铺展阶段,Ti7Al5Si12分解的同时伴随Al3Ti形成,对应于线性铺展阶段;润湿过程中出现了明显的前驱膜并伴随着较好的最终润湿性。

关键词 前驱膜Ti-6Al-4V界面反应    
Abstract

In order to improve the inoxidizability of TC4 alloy at high temperatures, hot dip aluminizing process is an efficient and economical way for industrial application. In this process, the wetting of TC4 alloy by molten Al alloy is the main factor which determined the coating quality. In this work, wetting of TC4 alloys by two industrial grade Al alloys (i.e., 6061 Al and 4043 Al alloys) were studied by using the modified sessile drop method at 600~700 ℃ under high vacuum. The results show that Al/Ti system is a typical reactive wetting, and the spreading dynamics can be described by reaction product control model, further the whole wetting behavior can be divided into two stages: the first stage for the nonlinear spreading and the second stage for the linear spreading. The small amount of alloying element Si in the Al alloys can cause significantly segregation at liquid/solid interface and formation of the Si-rich phase (Ti7Al5Si12). Ti7Al5Si12 decomposition is responsible for the nonlinear spreading, and Ti7Al5Si12 decomposition and Al3Ti formation are together responsible for the linear spreading. The formation of precursor film accompanies with the good final wettability.

Key wordsprecursor film    Ti-6Al-4V    interfacial reaction
收稿日期: 2016-07-07     
基金资助:国家自然科学基金项目Nos.51665031和51465032
图1  润湿实验装置示意图
Material C V Fe Si Mg Zn Ti Al
4043 Al alloy - - 0.80 5.00 0.05 - 0.20 Bal.
6061 Al alloy - - 0.70 0.60 0.90 0.25 0.15 Bal.
TC4 0.10 3.50~4.50 0.30 - - - Bal. 5.60~5.80
表1  实验材料的名义化学成分
图2  熔融6061、4043铝合金分别在TC4钛合金基板上接触角和归一化接触半径随时间的变化
图3  6061铝合金与TC4钛合金在600 ℃润湿后的SEM像
图4  4043铝合金与TC4钛合金在600 ℃润湿后的SEM像
图5  4043铝合金与TC4钛合金在650 ℃润湿后的SEM像
图6  铝合金与TC4钛合金润湿后样品由NaOH溶液去除凝固的Al后的宏观形貌及SEM像
图7  6061和4043铝合金与TC4钛合金润湿后前驱膜的XRD谱、界面XRD谱及原始TC4钛合金XRD谱
图8  动力学常数k1、k2的Arrhenius曲线
[1] Leyens C, Peters M, Kaysser W A. Intermetallic Ti-Al coatings for protection of titanium alloys: Oxidation and mechanical behavior [J]. Surf. Coat. Technol., 1997, 94-95: 34
[2] Du H L, Datta P K, Lewis D B, et al.Air oxidation behaviour of Ti-6Al-4V alloy between 650 and 850 ℃[J]. Corros. Sci., 1994, 36: 631
[3] Zhang Z G, Peng Y P, Mao Y L, et al.Effect of hot-dip aluminizing on the oxidation resistance of Ti-6Al-4V alloy at high temperatures[J]. Corros. Sci., 2012, 55: 187
[4] Liu D M, Zhu Z W, Li Z K, et al.Wetting behavior and interface characteristic of Ti32.8Zr30.2Ni5.3Cu9Be22.7/Ti6Al4V[J]. Mater. Sci. Forum, 2016, 849: 385
[5] Liu C C, Ou C L, Shiue R K.The microstructural observation and wettability study of brazing Ti-6Al-4V and 304 stainless steel using three braze alloys[J]. J. Mater. Sci., 2002, 37: 2225
[6] Tashi S R, Mousavi A S A A, Atabaki M M. Diffusion brazing of Ti-6Al-4V and stainless steel 316L using Ag-Cu-Zn filler metal[J]. Metall. Mater. Eng., 2013, 19: 189
[7] Gremillard L, Saiz E, Radmilovic V R, et al.Role of titanium on the reactive spreading of leading-free solders on alumina[J]. J. Mater. Res., 2006, 21: 3222
[8] Eustathopoulos N, Nicholas M G, Drevet B.Wettability at High Temperatures[M]. Oxford: Elsevier, 1999: 198
[9] Kim C, Kang S C, Baldwin D F.Experimental evaluation of wetting dynamics models for Sn63Pb37 and SnAg4.0Cu0.5 solder materials[J]. J. Appl. Phys., 2008, 104: 033537
[10] Yin L, Meschter S J, Singler T J.Wetting in the Au-Sn system[J]. Acta Mater., 2004, 52: 2873
[11] Zhang R F, Sheng S H, Liu B X.Predicting the formation enthalpies of binary intermetallic compounds[J]. Chem. Phys. Lett., 2007, 442: 511
[12] Lin Q L, Qiu F, Sui R.Characteristics of precursor film in the wetting of Zr-based alloys on ZrC substrate at 1253 K[J]. Thin Solid Films, 2014, 558: 231
[13] Leger L, Erman M, Guinet-Picard A M, et al. Precursor film profiles of spreading liquid drops[J]. Phys. Rev. Lett., 1988, 60: 2390
[14] Voinov O V.Wetting line dynamics in the process of drop spreading[J]. J. Colloid. Int. Sci., 2000, 226: 22
[15] Xian A P.Precursor film of tin-based active solder wetting on ceramics[J]. J. Mater. Sci., 1993, 28: 1019
[16] Zhuang H S, Lugscheider E.High Temperature Brazing[M]. Beijing: National Defense Industry, 1989: 163
[17] Dezellus O, Hodaj F, Eustathopoulos N.Progress in modelling of chemical-reaction limited wetting[J]. J. Eur. Ceram. Soc., 2003, 23: 2797
[18] Barin I.Thermochemical Data of Pure Substances[M]. 3rd Ed., Weinheim: Wiley-VCH Verlag GmbH, 1995: 1
[19] Protsenko P, Terlain A, Traskine V, et al.The role of intermetallics in wetting in metallic systems[J]. Scr. Mater., 2001, 45: 1439
[20] Gomez-Moreno O, Coudurier L, Eustathopoulos N.Role of adsorption in the wettability of solid iron by lead and its alloys[J]. Acta Metall., 1982, 30: 831
[21] Nicholas M, Poole D M.The influence of oxygen on wetting and bonding in the copper-tungsten system[J]. J. Mater. Sci., 1967, 2: 269
[22] Liashenko O Y, Hodaj F.Wetting and spreading kinetics of liquid Sn on Ag and Ag3Sn substrates[J]. Scr. Mater., 2017, 127: 24
[23] Bougiouri V, Voytovych R, Dezellus O, et al.Wetting and reactivity in Ni-Si/C system: Experiments versus model predictions[J]. J. Mater. Sci., 2007, 42: 2016
[24] Dezellus O, Jacques S, Hodaj F, et al.Wetting and infiltration of carbon by liquid silicon[J]. J. Mater. Sci., 2005, 40: 2307
[25] Dezellus O, Hodaj F, Eustathopoulos N.Chemical reaction-limited spreading: The triple line velocity versus contact angle relation[J]. Acta Mater., 2002, 50: 4741
[1] 沈莹莹, 张国兴, 贾清, 王玉敏, 崔玉友, 杨锐. SiCf/TiAl复合材料界面反应及热稳定性[J]. 金属学报, 2022, 58(9): 1150-1158.
[2] 宋庆忠, 潜坤, 舒磊, 陈波, 马颖澈, 刘奎. 镍基高温合金K417G与氧化物耐火材料的界面反应[J]. 金属学报, 2022, 58(7): 868-882.
[3] 樊永霞, 王建, 张学哲, 王建忠, 汤慧萍. SEBM成形片状极小曲面点阵材料的力学性能[J]. 金属学报, 2021, 57(7): 871-879.
[4] 王超, 张旭, 王玉敏, 杨青, 杨丽娜, 张国兴, 吴颖, 孔旭, 杨锐. SiCf/Ti65复合材料界面反应与基体相变机理[J]. 金属学报, 2020, 56(9): 1275-1285.
[5] 孙佳, 李学雄, 张金虎, 王刚, 杨梅, 王皞, 徐东生. Ti-6Al-4V合金βα相变中晶界α相形成机制的相场模拟[J]. 金属学报, 2020, 56(8): 1113-1122.
[6] 张志杰, 黄明亮. 原位研究Cu/Sn-37Pb/Cu微焊点液-固电迁移行为[J]. 金属学报, 2020, 56(10): 1386-1392.
[7] 冯业飞,周晓明,邹金文,王超渊,田高峰,宋晓俊,曾维虎. 粉末高温合金中SiO2夹杂物与基体的界面反应机理及对其变形行为的影响[J]. 金属学报, 2019, 55(11): 1437-1447.
[8] 邱丰, 佟昊天, 沈平, 丛晓霜, 王轶, 姜启川. 综述:SiC/Al界面反应与界面结构演变规律及机制[J]. 金属学报, 2019, 55(1): 87-100.
[9] 徐江, 鲍习科, 蒋书运. 纳米晶Ta2N涂层在模拟人体环境中的耐蚀性能研究[J]. 金属学报, 2018, 54(3): 443-456.
[10] 赵宁,邓建峰,钟毅,殷录桥. 热迁移下Ni/Sn-xCu/Ni微焊点钎焊界面金属间化合物的演变[J]. 金属学报, 2017, 53(7): 861-868.
[11] 张志杰,黄明亮. Cu/Sn-52In/Cu微焊点液-固电迁移行为研究[J]. 金属学报, 2017, 53(5): 592-600.
[12] 张金虎,徐东生,王云志,杨锐. 位错对Ti-6Al-4V合金α相形核及微织构形成的影响*[J]. 金属学报, 2016, 52(8): 905-915.
[13] 刘小龙,孙成奇,周砚田,洪友士. 微结构和应力比对Ti-6Al-4V高周和超高周疲劳行为的影响*[J]. 金属学报, 2016, 52(8): 923-930.
[14] 朱莉娜,邓彩艳,王东坡,胡绳荪. 表面粗糙度对Ti-6Al-4V合金超高周疲劳性能的影响*[J]. 金属学报, 2016, 52(5): 583-591.
[15] 王玉敏, 张国兴, 张旭, 杨青, 杨丽娜, 杨锐. 连续SiC纤维增强钛基复合材料研究进展*[J]. 金属学报, 2016, 52(10): 1153-1170.